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1 Algebraic equations in separated variables:

{(x , y)|f (x)− g(y) = 0}.

2 Normalize for a projective nonsingular algebraic curve Xf ,g with
two projections to the (Riemann sphere) z-line P1

z = C ∪ {∞}:
prx : Xf ,g → P1

x and pry : Xf ,g → P1
y ;

f : P1
x → P1

z and g : P1
y → P1

z .
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We use 2 problems from 60s solved by the monodromy method ,
refers to 2 genus 0 problems related to John Thompson

1 Davenport’s: Suppose f , g ∈ K [x ] \ K has exactly the same
ranges on almost all residue fields:
Related in obvious way – f (x) = g(ax + b), a, b constant?
[Sc71], [Fr73].

2 Schinzel’s: Suppose f (x)− g(y) reducible:
Are f , g related in an obvious way?

3 1st Genus 0 Problem: What are possible monodromy groups
Gf (f a polynomial or rational function)? [Fr05a, §7.2]

4 2nd Genus 0 problem: Relate characters of the Monster simple
group and genus 0 modular curves.
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Summary

Indecomposability condition: We will assume f is not a
composition of lower degree polynomials.

1 Part I: Davenport and Schinzel Problems

2 §I.A. The dihedral group with observations
§I.B. Splitting variables
§I.C. Introducing Galois groups
§I.D. Translating Davenport to Group Theory

3 Part II: Primitivity, cycles, Simple Group Classification
4 §II.A. Translating Primitivity for f : X → P1

z
§II.B. Further Group translation of Davenport
§II.C. Double Transitivity and Difference sets

5 Part III. What groups give Davenport pairs and how?
6 §III.A. Projective Linear Groups

§III.B. Punchlines onDavenport (f indecomposable)
§III.C. From III.B, Hints at the Genus 0 Problem
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Part I: Davenport and Schinzel Problems
I.A: Chebychev polynomials are dihedral polynomials

Regard any rational function f in w – degree m – as a cover of a
complex sphere by a complex sphere:

f : P1
w = Cw ∪ {∞} → P1

z = Cz ∪ {∞}.

Then, f has finitely many (branch) points, z ′, over which it
ramifies: Instead of m distinct values of w , there are fewer.
Designate branch points by {z1, . . . , zr} = zzz .

Calculus: Uses Tm(cos(θ)) = cos(mθ), with Tm(w) = z : mth
Chebychev polynomial.

Goal : Express cos(θ)m as a sum of cos(kθ) terms, 0 ≤ k ≤ m.
So, we can integrate any polynomial in cos(θ).
Trick : Induct on m to find T ∗m(w) = 2Tm(w/2) so
T ∗m(u+1/u) = um+1/um. Then substitute u 7→ e2πiθ.
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Branch cycles for rational functions

Select a point z0 ∈ P1
z \ zzz

def
= Uzzz . Use classical generators of

π1(Uzzz , z0), P1, . . . ,Pr , based at z0 around zzz .

Label points of P1
w over z0 as {1′, . . . ,m′}. Each Pi is a loop

around zτ(i) where τ is a permutation of {1, . . . , r}.
Restrict f over pullback Uwww ⊂ P1

w of Uzzz in P1
w . Unique path

lift of Pi , starting at j ′ ∈ {1′, . . . ,m′} 7→ endpoint j ′′.
Gives a permutation σi of {1′, . . . ,m′}.

(σ1, . . . , σr ) = σσσ – branch cycles for f – ordered from classical
generators emanating in order clockwise from z0.

1 Generation: 〈σ1, . . . , σr 〉 = Gf ≤ Sm is group of smallest
Galois cover of P1

z over C factoring through P1
w .

Call f a Gf cover (Tm is a dihedral cover).

2 Conjugacy classes: the σi s represent r conjugacy classes C in
Gf with well-defined multiplicity.

3 Product-one: σ1 · · ·σr = 1.
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I.B: Splitting variables

Separated variables ⇒ introduce z :
f (x)− z = 0 and g(y)− z = 0. Express by covers:

f : P1
x → P1

z and g : P1
y → P1

z (added ∞; degrees m and n).
Note: Problem not changed by replacing (f , g) by
(α ◦ f ◦ β, α ◦ g ◦ γ) with α, β, γ affine transformations.
Fiber product denoted P1

x ×P1
z

P1
y :

{(x ′, y ′) | f (x ′) = g(y ′)}.

But this will have singularities. We want non-singular
(normalization) of set-theoretic fiber product.
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I.C: More on Galois closure of f

1 Galois closure covers f̂ : X̂f → P1
z (resp. ĝ : X̂g→ P1

z):
connected component of m-fold (resp. n-fold) fiber product of
f (resp. g), minus fat diagonal.

2 Sm permutes coordinates: Gf is subgroup of Sm fixing X̂f ;
Denote the permutation representation by Tf .

3 Combine Galois closures: Fiber product of f̂ and ĝ over the
maximal cover Z → P1

z through which they both factor:

Gf ,g = Gf ×G(Z/P1
z )
Gg .

Projects to Gf and Gg , inducing reps. Tf and Tg .
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maximal cover Z → P1

z through which they both factor:

Gf ,g = Gf ×G(Z/P1
z )
Gg .

Projects to Gf and Gg , inducing reps. Tf and Tg .

Variables Separated Equations



I.D: Translating Davenport to Group Theory
Start of monodromy method

As expected, particular problems require an expert to translate:
Use C(hebotarev) D(ensity) T(heorem)+ .

Theorem (Strong Davenport)

Equivalent to (f , g) a Davenport pair: ∀ σ ∈ Gf ,g ,
Tf (σ) fixes an integer ⇔ Tg (σ) fixes an integer.

The + above CDT: Usual rough result is here precise.
If conclusion reduced mod prime ppp holds, then ranges of f and
g mod ppp are the same [DL63], [Fr05b, Princ. 3.1], [Mc67].

Actual Davenport pairs have equality in the ranges without
exception, (you might expect only near equality).
Natural pairs come with equality of ranges for all primes.

Variables Separated Equations
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Capturing Davenport with Group Theory

1 Group Problem P1: What groups (permutation pairs) give such
a Gf ,g? How does this relate to simple group classification?

2 Converse Problem P2: Even answering P1, from whence
polynomials (f , g) satisfying Davenport?

3 Our hypothesis: f indecomposable ⇔ Gf is primitive.

Primitive: No group properly between Gf and
Gf (1) = {σ ∈ Gf | Tf (σ)(1) = 1}.
Doubly Transitive: Gf (1) transitive on {2, . . . ,m}
=⇒ primitive.

Variables Separated Equations
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Part II: Primitivity, cycles, Simple Group Classification
II.A: Translating Primitivity for f : X → P1

z

Primitive group template of 5 patterns: 4 from (almost) simple
groups; rest from affine groups [A-O-S85], [FGS93, §13].
Classifying Doubly transitive groups is easier.

If group is not primitive, even the classification isn’t helpful.

Gf primitive ⇔ f factors through no proper cover.

Gf doubly transitive ⇔ X ×P1
z
X has exactly two irreducible

components (one the diagonal).
Doubly Transitive ⇔ (f (x)−f (y)/(x −y) irreducible.

Variables Separated Equations
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II.B: Further Group translation of Davenport

Key Observations:
1 Degree m poly. branch cycles include an m-cycle σ∞ at ∞.

2 If Tf primitive, then Tf doubly transitive unless f is
(Möbius equivalent to: modulo linear fractional compositions)
Chebychev or cyclic (x 7→ xn) [Fr70].

3 Representation Thm: For (f , g) a Davenport pair:

deg(f ) = deg(g), X̂f = X̂g , so Gf = Gg ; and
Tf = Tg as group representations, but not as permutation
representations.
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Proof of Degree Equality

Get branch cycle σ∞ in Gf ,g with Tf (σ∞) (resp. Tg (σ∞)) an
m-cycle (resp. n-cycle).

Suppose (m, n) = d < m. Consider σ′ = σm
∞.

Then Tf (σ
′) fixes all integers; Tg (σ′) moves each integer.

This contradicts Strong Dav. Thm.
A fancier version of this gives X̂f = X̂g and Gf = Gg .
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II.C: Double Transitivity and Difference sets

Consider zeros {xi}ni=1 of f (x)− z . Equality of Galois closures =⇒
these are functions of zeros {yi}ni=1 of g(y)− z (and vice-versa).

Normalize numbering: σ∞ cycles xi s and yi s.

Theorem (Double Transitivity)

Tf doubly transitive =⇒ this much stronger conclusion:

x1 = y1 + yα2 + · · ·+ yαk , 2 ≤ k ≤ (n − 1)/2 :

The representation space is the same for x s and y s.
Write R1 = {1, α2, . . . , αk} mod n.
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Difference Set Argument

Theorem (Multiplier)

1 Different set: Among nonzero differences from R1, each integer
{1, . . . , n − 1} occurs u = k(k − 1)/(n − 1) times.

The expression for yi s in xjs gives the different set (up to
translation) −R1.

2 Acting by σ∞ – translating subscripts – gives collections Ri ,
i = 1, . . . , n.

3 # times u mod n appears as a (nonzero) difference from R1
equals # times {1, u + 1} appears in the union of the Ri s.
(Normalize u as a difference to have 1st integer "1.")

4 Tf doubly transitive ⇔ Gf (1) transitive on {2, . . . , n}:
# of appearances of {1, u + 1} in ∪iRi independent of u.
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Part III: What groups give Davenport pairs and how?
§III.A: Projective Linear Groups

Finite field Fq (with q = pt , p prime). For v ≥ 2, Fqv+1 is a
dimension v + 1 vector space over Fq.

PGLv+1(Fq) = GLv+1(Fq)/(Fq)
∗ acts on lines through origin:

on the n = (qv+1 − 1)(q − 1) points of projective v -space.

Brumer-McLaughlin-Misera-Feit-Thompson-Guralnick-Saxl-
Müller interactions story told in [UMSt]: Using group theory vs
how to study groups. I now outline these points.

1 What groups arise as Gf with (f , g) a D(avenport)P(air).

2 From those, how to produce all Davenport pairs.
3 Genus 0 Problem–Thompson Conjecture: From Davenport and

related: Only composition factors of f : P1
w → P1

z monodromy,
An s and Z/p s, excluding finitely many exceptions.

4 Guralnick conjecture: Precise on actual monodromy of
primitive Rational function [Fr05a, §7.2.3].
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Why projective Linear Groups arise

1 PGLv+1(Fq) has two (inequivalent) doubly transitive
permutation representations: On points and on hyperplanes.

2 An incidence matrix conjugates between them: They are
equivalent as group representations.

3 Euler’s Thm. gives a cyclic generator, γq, of F∗qv+1 . Multiplying
by γq on Fqv+1 = F v+1

q induces an n-cycle in PGLv+1(Fq).
4 Conjecture [Fr73]: Two equivalent doubly transitive reps. and

n-cycle: Except for one of deg 11, all are nearly PGLv+1 s.
Proof (from classification) [Fr99, §9], based on [CKS76].
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III.B: Punchlines onDavenport (f indecomposable)

1 Davenport’s Question: ∃ DPs over Q? Multiplier Theorem
=⇒ g is complex conjugate to f . No DPs over Q.
Equivalent to σ∞ not conjugate to σ−1

∞ .
No use of classification; first use of Branch Cycle Argument.

2 Answer to Schinzel’s Problem: If f (x)− h(y) factors (over C),
then h = g(h2(y)) with (f , g) a DP over some field.

3 Degrees of DPs over some number field K :

n = 7, 11, 13, 15, 21, 31.

For each n, we know exactly what K s carry DPs.
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III.C: From III.B, Hints at the Genus 0 Problem

1 For n = 7, 13, 15 (resp. described in [Fr80, §B], [CoCa99],
[Fr99,§8]) there are non-trivial Möbius equivalence families of
Davenport pairs. For n = 7 = 1 + 2 + 22, Gf = PGL3(Z/2).

2 n = 7 branch cycles: (σ1, σ2, σ3, σ4); σ1, σ2, σ3 involutions,
each fixing the 3 points, on some hyperplane; σ4 a 7-cycle.

Riemann-Hurwitz : Cover with these branch cycles has genus
ggg7 = 0: 2(7+ggg7 -1)=

∑4
i=1 ind(σi ) = 3 · 2 + 6 =⇒ ggg7=0.

3 Two genus 0 j-line covers parametrize the (f , g) pairs – two
reduced Hurwitz spaces – conjugate over Q(

√
−7).

4 A cover gives a bundle: Both families parametrize the same
family of rank 7 bundles (over Q). Similarly, for n = 13 and 15.

5 Ron Solomon [So01] says things about "groups appearing in
Nature:" Do rational functions appear in nature?
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