Variables Separated Equations and

 Finite Simple Groups2PM, April 6, 2010: Mike Fried, Emeritus UC Irvine [UmSt]

April 7, 2010
(1) Algebraic equations in separated variables:

$$
\{(x, y) \mid f(x)-g(y)=0\}
$$

Variables Separated Equations and

 Finite Simple Groups2PM, April 6, 2010: Mike Fried, Emeritus UC Irvine [UmSt]

April 7, 2010

(1) Algebraic equations in separated variables:

$$
\{(x, y) \mid f(x)-g(y)=0\}
$$

(2) Normalize for a projective nonsingular algebraic curve $X_{f, g}$ with two projections to the (Riemann sphere) z-line $\mathbb{P}_{z}^{1}=\mathbb{C} \cup\{\infty\}$:

$$
\begin{aligned}
\mathrm{pr}_{x}: X_{f, g} & \rightarrow \mathbb{P}_{x}^{1} \text { and } \mathrm{pr}_{y}: X_{f, g} \rightarrow \mathbb{P}_{y}^{1} \\
\quad f: \mathbb{P}_{x}^{1} & \rightarrow \mathbb{P}_{z}^{1} \text { and } g: \mathbb{P}_{y}^{1} \rightarrow \mathbb{P}_{z}^{1}
\end{aligned}
$$

We use 2 problems from 60s solved by the monodromy method, refers to 2 genus 0 problems related to John Thompson
(1) Davenport's: Suppose $f, g \in K[x] \backslash K$ has exactly the same ranges on almost all residue fields:
Related in obvious way $-f(x)=g(a x+b), a, b$ constant? [Sc71], [Fr73].

We use 2 problems from 60s solved by the monodromy method, refers to 2 genus 0 problems related to John Thompson
(1) Davenport's: Suppose $f, g \in K[x] \backslash K$ has exactly the same ranges on almost all residue fields:
Related in obvious way $-f(x)=g(a x+b), a, b$ constant? [Sc71], [Fr73].
(2) Schinzel's: Suppose $f(x)-g(y)$ reducible:

Are f, g related in an obvious way?

We use 2 problems from 60s solved by the monodromy method, refers to 2 genus 0 problems related to John Thompson
(1) Davenport's: Suppose $f, g \in K[x] \backslash K$ has exactly the same ranges on almost all residue fields:
Related in obvious way $-f(x)=g(a x+b), a, b$ constant? [Sc71], [Fr73].
(2) Schinzel's: Suppose $f(x)-g(y)$ reducible:

Are f, g related in an obvious way?
(3) 1st Genus 0 Problem: What are possible monodromy groups G_{f} (f a polynomial or rational function)? [Fr05a, §7.2]

We use 2 problems from 60s solved by the monodromy method, refers to 2 genus 0 problems related to John Thompson
(1) Davenport's: Suppose $f, g \in K[x] \backslash K$ has exactly the same ranges on almost all residue fields:
Related in obvious way $-f(x)=g(a x+b), a, b$ constant? [Sc71], [Fr73].
(2) Schinzel's: Suppose $f(x)-g(y)$ reducible:

Are f, g related in an obvious way?
(3) 1st Genus 0 Problem: What are possible monodromy groups G_{f} (f a polynomial or rational function)? [Fr05a, §7.2]
(9) 2nd Genus 0 problem: Relate characters of the Monster simple group and genus 0 modular curves.

Summary

Indecomposability condition: We will assume f is not a composition of lower degree polynomials.
(1) Part I: Davenport and Schinzel Problems

Summary

Indecomposability condition: We will assume f is not a composition of lower degree polynomials.
(1) Part I: Davenport and Schinzel Problems
(2) §I.A. The dihedral group with observations

- §I.B. Splitting variables
- §I.C. Introducing Galois groups
- §I.D. Translating Davenport to Group Theory

Summary

Indecomposability condition: We will assume f is not a composition of lower degree polynomials.
(1) Part I: Davenport and Schinzel Problems
(2) - §I.A. The dihedral group with observations

- §I.B. Splitting variables
- §I.C. Introducing Galois groups
- §I.D. Translating Davenport to Group Theory
(3) Part II: Primitivity, cycles, Simple Group Classification

Summary

Indecomposability condition: We will assume f is not a composition of lower degree polynomials.
(1) Part I: Davenport and Schinzel Problems
(2) - §I.A. The dihedral group with observations

- §I.B. Splitting variables
- §I.C. Introducing Galois groups
- §I.D. Translating Davenport to Group Theory
(3) Part II: Primitivity, cycles, Simple Group Classification
(9) § §II.A. Translating Primitivity for $f: X \rightarrow \mathbb{P}_{z}^{1}$
- §II.B. Further Group translation of Davenport
- §II.C. Double Transitivity and Difference sets

Summary

Indecomposability condition: We will assume f is not a composition of lower degree polynomials.
(1) Part I: Davenport and Schinzel Problems
(2) §I.A. The dihedral group with observations

- §I.B. Splitting variables
- §I.C. Introducing Galois groups
- §I.D. Translating Davenport to Group Theory
(3) Part II: Primitivity, cycles, Simple Group Classification
(9) § §II.A. Translating Primitivity for $f: X \rightarrow \mathbb{P}_{z}^{1}$
- §II.B. Further Group translation of Davenport
- §II.C. Double Transitivity and Difference sets
(5) Part III. What groups give Davenport pairs and how?

Summary

Indecomposability condition: We will assume f is not a composition of lower degree polynomials.
(1) Part I: Davenport and Schinzel Problems
(2) - §I.A. The dihedral group with observations

- §I.B. Splitting variables
- §I.C. Introducing Galois groups
- §I.D. Translating Davenport to Group Theory
(3) Part II: Primitivity, cycles, Simple Group Classification
(9) § §II.A. Translating Primitivity for $f: X \rightarrow \mathbb{P}_{z}^{1}$
- §II.B. Further Group translation of Davenport
- §II.C. Double Transitivity and Difference sets
(3) Part III. What groups give Davenport pairs and how?
- - §III.A. Projective Linear Groups
- §III.B. Punchlines on Davenport (f indecomposable)
- §III.C. From III.B, Hints at the Genus 0 Problem

Part I: Davenport and Schinzel Problems I.A: Chebychev polynomials are dihedral polynomials

Regard any rational function f in w - degree m - as a cover of a complex sphere by a complex sphere:

$$
f: \mathbb{P}_{w}^{1}=\mathbb{C}_{w} \cup\{\infty\} \rightarrow \mathbb{P}_{z}^{1}=\mathbb{C}_{z} \cup\{\infty\}
$$

Then, f has finitely many (branch) points, z^{\prime}, over which it ramifies: Instead of m distinct values of w, there are fewer. Designate branch points by $\left\{z_{1}, \ldots, z_{r}\right\}=\boldsymbol{z}$.

- Calculus: Uses $T_{m}(\cos (\theta))=\cos (m \theta)$, with $T_{m}(w)=z: m$ th Chebychev polynomial.

Part I: Davenport and Schinzel Problems I.A: Chebychev polynomials are dihedral polynomials

Regard any rational function f in w - degree m - as a cover of a complex sphere by a complex sphere:

$$
f: \mathbb{P}_{w}^{1}=\mathbb{C}_{w} \cup\{\infty\} \rightarrow \mathbb{P}_{z}^{1}=\mathbb{C}_{z} \cup\{\infty\}
$$

Then, f has finitely many (branch) points, z^{\prime}, over which it ramifies: Instead of m distinct values of w, there are fewer. Designate branch points by $\left\{z_{1}, \ldots, z_{r}\right\}=\boldsymbol{z}$.

- Calculus: Uses $T_{m}(\cos (\theta))=\cos (m \theta)$, with $T_{m}(w)=z: m$ th Chebychev polynomial.
- Goal: Express $\cos (\theta)^{m}$ as a sum of $\cos (k \theta)$ terms, $0 \leq k \leq m$. So, we can integrate any polynomial in $\cos (\theta)$.

Part I: Davenport and Schinzel Problems I.A: Chebychev polynomials are dihedral polynomials

Regard any rational function f in w - degree m - as a cover of a complex sphere by a complex sphere:

$$
f: \mathbb{P}_{w}^{1}=\mathbb{C}_{w} \cup\{\infty\} \rightarrow \mathbb{P}_{z}^{1}=\mathbb{C}_{z} \cup\{\infty\}
$$

Then, f has finitely many (branch) points, z^{\prime}, over which it ramifies: Instead of m distinct values of w, there are fewer. Designate branch points by $\left\{z_{1}, \ldots, z_{r}\right\}=\boldsymbol{z}$.

- Calculus: Uses $T_{m}(\cos (\theta))=\cos (m \theta)$, with $T_{m}(w)=z: m$ th Chebychev polynomial.
- Goal: Express $\cos (\theta)^{m}$ as a sum of $\cos (k \theta)$ terms, $0 \leq k \leq m$. So, we can integrate any polynomial in $\cos (\theta)$.
- Trick: Induct on m to find $T_{m}^{*}(w)=2 T_{m}(w / 2)$ so $T_{m}^{*}(u+1 / u)=u^{m}+1 / u^{m}$. Then substitute $u \mapsto e^{2 \pi i \theta}$.

Branch cycles for rational functions

- Select a point $z_{0} \in \mathbb{P}_{z}^{1} \backslash \boldsymbol{z} \stackrel{\text { def }}{=} U_{z}$. Use classical generators of $\pi_{1}\left(U_{z}, z_{0}\right), P_{1}, \ldots, P_{r}$, based at z_{0} around \boldsymbol{z}.

Branch cycles for rational functions

- Select a point $z_{0} \in \mathbb{P}_{z}^{1} \backslash \boldsymbol{z} \stackrel{\text { def }}{=} U_{z}$. Use classical generators of $\pi_{1}\left(U_{z}, z_{0}\right), P_{1}, \ldots, P_{r}$, based at z_{0} around \boldsymbol{z}.
- Label points of \mathbb{P}_{w}^{1} over z_{0} as $\left\{1^{\prime}, \ldots, m^{\prime}\right\}$. Each P_{i} is a loop around $z_{\tau(i)}$ where τ is a permutation of $\{1, \ldots, r\}$.

Branch cycles for rational functions

- Select a point $z_{0} \in \mathbb{P}_{z}^{1} \backslash \boldsymbol{z} \stackrel{\text { def }}{=} U_{z}$. Use classical generators of $\pi_{1}\left(U_{z}, z_{0}\right), P_{1}, \ldots, P_{r}$, based at z_{0} around \boldsymbol{z}.
- Label points of \mathbb{P}_{w}^{1} over z_{0} as $\left\{1^{\prime}, \ldots, m^{\prime}\right\}$. Each P_{i} is a loop around $z_{\tau(i)}$ where τ is a permutation of $\{1, \ldots, r\}$.
- Restrict f over pullback $U_{w} \subset \mathbb{P}_{w}^{1}$ of U_{z} in \mathbb{P}_{w}^{1}. Unique path lift of P_{i}, starting at $j^{\prime} \in\left\{1^{\prime}, \ldots, m^{\prime}\right\} \mapsto$ endpoint $j^{\prime \prime}$.

Gives a permutation σ_{i} of $\left\{1^{\prime}, \ldots, m^{\prime}\right\}$.

Branch cycles for rational functions

- Select a point $z_{0} \in \mathbb{P}_{z}^{1} \backslash \boldsymbol{z} \stackrel{\text { def }}{=} U_{z}$. Use classical generators of $\pi_{1}\left(U_{\mathbf{z}}, z_{0}\right), P_{1}, \ldots, P_{r}$, based at z_{0} around \boldsymbol{z}.
- Label points of \mathbb{P}_{w}^{1} over z_{0} as $\left\{1^{\prime}, \ldots, m^{\prime}\right\}$. Each P_{i} is a loop around $z_{\tau(i)}$ where τ is a permutation of $\{1, \ldots, r\}$.
- Restrict f over pullback $U_{w} \subset \mathbb{P}_{w}^{1}$ of U_{z} in \mathbb{P}_{w}^{1}. Unique path lift of P_{i}, starting at $j^{\prime} \in\left\{1^{\prime}, \ldots, m^{\prime}\right\} \mapsto$ endpoint $j^{\prime \prime}$.

Gives a permutation σ_{i} of $\left\{1^{\prime}, \ldots, m^{\prime}\right\}$.

- $\left(\sigma_{1}, \ldots, \sigma_{r}\right)=\boldsymbol{\sigma}$ - branch cycles for f - ordered from classical generators emanating in order clockwise from z_{0}.

Branch cycles for rational functions

- Select a point $z_{0} \in \mathbb{P}_{z}^{1} \backslash \boldsymbol{z} \stackrel{\text { def }}{=} U_{z}$. Use classical generators of $\pi_{1}\left(U_{\mathbf{z}}, z_{0}\right), P_{1}, \ldots, P_{r}$, based at z_{0} around \boldsymbol{z}.
- Label points of \mathbb{P}_{w}^{1} over z_{0} as $\left\{1^{\prime}, \ldots, m^{\prime}\right\}$. Each P_{i} is a loop around $z_{\tau(i)}$ where τ is a permutation of $\{1, \ldots, r\}$.
- Restrict f over pullback $U_{w} \subset \mathbb{P}_{w}^{1}$ of U_{z} in \mathbb{P}_{w}^{1}. Unique path lift of P_{i}, starting at $j^{\prime} \in\left\{1^{\prime}, \ldots, m^{\prime}\right\} \mapsto$ endpoint $j^{\prime \prime}$.

Gives a permutation σ_{i} of $\left\{1^{\prime}, \ldots, m^{\prime}\right\}$.

- $\left(\sigma_{1}, \ldots, \sigma_{r}\right)=\boldsymbol{\sigma}$ - branch cycles for f - ordered from classical generators emanating in order clockwise from z_{0}.
(1) Generation: $\left\langle\sigma_{1}, \ldots, \sigma_{r}\right\rangle=G_{f} \leq S_{m}$ is group of smallest Galois cover of \mathbb{P}_{z}^{1} over \mathbb{C} factoring through \mathbb{P}_{w}^{1}. Call f a G_{f} cover (T_{m} is a dihedral cover).
(2) Conjugacy classes: the $\sigma_{i} s$ represent r conjugacy classes \mathbf{C} in G_{f} with well-defined multiplicity.
(3) Product-one: $\sigma_{1} \cdots \sigma_{r}=1$.

I.B: Splitting variables

- Separated variables \Rightarrow introduce z : $f(x)-z=0$ and $g(y)-z=0$. Express by covers:

I.B: Splitting variables

- Separated variables \Rightarrow introduce z : $f(x)-z=0$ and $g(y)-z=0$. Express by covers:
- $f: \mathbb{P}_{x}^{1} \rightarrow \mathbb{P}_{z}^{1}$ and $g: \mathbb{P}_{y}^{1} \rightarrow \mathbb{P}_{z}^{1}($ added ∞; degrees m and $n)$. Note: Problem not changed by replacing (f, g) by $(\alpha \circ f \circ \beta, \alpha \circ g \circ \gamma)$ with α, β, γ affine transformations.

I.B: Splitting variables

- Separated variables \Rightarrow introduce z : $f(x)-z=0$ and $g(y)-z=0$. Express by covers:
- $f: \mathbb{P}_{x}^{1} \rightarrow \mathbb{P}_{z}^{1}$ and $g: \mathbb{P}_{y}^{1} \rightarrow \mathbb{P}_{z}^{1}$ (added ∞; degrees m and n). Note: Problem not changed by replacing (f, g) by $(\alpha \circ f \circ \beta, \alpha \circ g \circ \gamma)$ with α, β, γ affine transformations.
- Fiber product denoted $\mathbb{P}_{x}^{1} \times_{\mathbb{P}_{z}^{1}} \mathbb{P}_{y}^{1}$:

$$
\left\{\left(x^{\prime}, y^{\prime}\right) \mid f\left(x^{\prime}\right)=g\left(y^{\prime}\right)\right\}
$$

But this will have singularities. We want non-singular (normalization) of set-theoretic fiber product.

I.C: More on Galois closure of f

(1) Galois closure covers $\hat{f}: \hat{X}_{f} \rightarrow \mathbb{P}_{z}^{1}$ (resp. $\hat{g}: \hat{X}_{g} \rightarrow \mathbb{P}_{z}^{1}$): connected component of m-fold (resp. n-fold) fiber product of f (resp. g), minus fat diagonal.

I.C: More on Galois closure of f

(1) Galois closure covers $\hat{f}: \hat{X}_{f} \rightarrow \mathbb{P}_{z}^{1}$ (resp. $\hat{g}: \hat{X}_{g} \rightarrow \mathbb{P}_{z}^{1}$): connected component of m-fold (resp. n-fold) fiber product of f (resp. g), minus fat diagonal.
(2) S_{m} permutes coordinates: G_{f} is subgroup of S_{m} fixing \hat{X}_{f}; Denote the permutation representation by T_{f}.

I.C: More on Galois closure of f

(1) Galois closure covers $\hat{f}: \hat{X}_{f} \rightarrow \mathbb{P}_{z}^{1}$ (resp. $\hat{g}: \hat{X}_{g} \rightarrow \mathbb{P}_{z}^{1}$): connected component of m-fold (resp. n-fold) fiber product of f (resp. g), minus fat diagonal.
(2) S_{m} permutes coordinates: G_{f} is subgroup of S_{m} fixing \hat{X}_{f}; Denote the permutation representation by T_{f}.
(3) Combine Galois closures: Fiber product of \hat{f} and \hat{g} over the maximal cover $Z \rightarrow \mathbb{P}_{z}^{1}$ through which they both factor:

$$
G_{f, g}=G_{f} \times{ }_{G\left(Z / \mathbb{P}_{z}^{1}\right)} G_{g} .
$$

Projects to G_{f} and G_{g}, inducing reps. T_{f} and T_{g}.
I.D: Translating Davenport to Group Theory Start of monodromy method

As expected, particular problems require an expert to translate: Use C (hebotarev) D (ensity) T (heorem) ${ }^{+}$

Theorem (Strong Davenport)

Equivalent to (f, g) a Davenport pair: $\forall \sigma \in G_{f, g}$, $T_{f}(\sigma)$ fixes an integer $\Leftrightarrow T_{g}(\sigma)$ fixes an integer.

The + above CDT: Usual rough result is here precise.

- If conclusion reduced mod prime \boldsymbol{p} holds, then ranges of f and $g \bmod p$ are the same [DL63], [Fr05b, Princ. 3.1], [Mc67].
I.D: Translating Davenport to Group Theory Start of monodromy method

As expected, particular problems require an expert to translate: Use C (hebotarev) D (ensity) T (heorem) ${ }^{+}$

Theorem (Strong Davenport)

Equivalent to (f, g) a Davenport pair: $\forall \sigma \in G_{f, g}$, $T_{f}(\sigma)$ fixes an integer $\Leftrightarrow T_{g}(\sigma)$ fixes an integer.

The + above CDT: Usual rough result is here precise.

- If conclusion reduced mod prime \boldsymbol{p} holds, then ranges of f and $g \bmod p$ are the same [DL63], [Fr05b, Princ. 3.1], [Mc67].
- Actual Davenport pairs have equality in the ranges without exception, (you might expect only near equality).
I.D: Translating Davenport to Group Theory Start of monodromy method

As expected, particular problems require an expert to translate: Use C (hebotarev) D (ensity) T (heorem) ${ }^{+}$

Theorem (Strong Davenport)

Equivalent to (f, g) a Davenport pair: $\forall \sigma \in G_{f, g}$, $T_{f}(\sigma)$ fixes an integer $\Leftrightarrow T_{g}(\sigma)$ fixes an integer.

The + above CDT: Usual rough result is here precise.

- If conclusion reduced mod prime \boldsymbol{p} holds, then ranges of f and $g \bmod p$ are the same [DL63], [Fr05b, Princ. 3.1], [Mc67].
- Actual Davenport pairs have equality in the ranges without exception, (you might expect only near equality).
- Natural pairs come with equality of ranges for all primes.

Capturing Davenport with Group Theory

(1) Group Problem P_{1} : What groups (permutation pairs) give such a $G_{f, g}$? How does this relate to simple group classification?

Capturing Davenport with Group Theory

(1) Group Problem P_{1} : What groups (permutation pairs) give such a $G_{f, g}$? How does this relate to simple group classification?
(2) Converse Problem P_{2} : Even answering P_{1}, from whence polynomials (f, g) satisfying Davenport?

Capturing Davenport with Group Theory

(1) Group Problem P_{1} : What groups (permutation pairs) give such a $G_{f, g}$? How does this relate to simple group classification?
(2) Converse Problem P_{2} : Even answering P_{1}, from whence polynomials (f, g) satisfying Davenport?
(3) Our hypothesis: f indecomposable $\Leftrightarrow G_{f}$ is primitive.

Capturing Davenport with Group Theory

(1) Group Problem P_{1} : What groups (permutation pairs) give such a $G_{f, g}$? How does this relate to simple group classification?
(2) Converse Problem P_{2} : Even answering P_{1}, from whence polynomials (f, g) satisfying Davenport?
(3) Our hypothesis: f indecomposable $\Leftrightarrow G_{f}$ is primitive.

- Primitive: No group properly between G_{f} and $G_{f}(1)=\left\{\sigma \in G_{f} \mid T_{f}(\sigma)(1)=1\right\}$.
- Doubly Transitive: $G_{f}(1)$ transitive on $\{2, \ldots, m\}$
\Longrightarrow primitive.

Part II: Primitivity, cycles, Simple Group Classification II.A: Translating Primitivity for $f: X \rightarrow \mathbb{P}_{z}^{1}$

Primitive group template of 5 patterns: 4 from (almost) simple groups; rest from affine groups [A-O-S85], [FGS93, §13]. Classifying Doubly transitive groups is easier.

If group is not primitive, even the classification isn't helpful.

- G_{f} primitive $\Leftrightarrow f$ factors through no proper cover.

Part II: Primitivity, cycles, Simple Group Classification II.A: Translating Primitivity for $f: X \rightarrow \mathbb{P}_{z}^{1}$

Primitive group template of 5 patterns: 4 from (almost) simple groups; rest from affine groups [A-O-S85], [FGS93, §13]. Classifying Doubly transitive groups is easier.

If group is not primitive, even the classification isn't helpful.

- G_{f} primitive $\Leftrightarrow f$ factors through no proper cover.
- G_{f} doubly transitive $\Leftrightarrow X \times_{\mathbb{P}_{2}^{1}} X$ has exactly two irreducible components (one the diagonal).

Part II: Primitivity, cycles, Simple Group Classification II.A: Translating Primitivity for $f: X \rightarrow \mathbb{P}_{z}^{1}$

Primitive group template of 5 patterns: 4 from (almost) simple groups; rest from affine groups [A-O-S85], [FGS93, §13]. Classifying Doubly transitive groups is easier.

If group is not primitive, even the classification isn't helpful.

- G_{f} primitive $\Leftrightarrow f$ factors through no proper cover.
- G_{f} doubly transitive $\Leftrightarrow X \times_{\mathbb{P}_{1}^{1}} X$ has exactly two irreducible components (one the diagonal).
- Doubly Transitive $\Leftrightarrow(f(x)-f(y) /(x-y)$ irreducible.

II.B: Further Group translation of Davenport

Key Observations:
(1) Degree m poly. branch cycles include an m-cycle σ_{∞} at ∞.

II.B: Further Group translation of Davenport

Key Observations:
(1) Degree m poly. branch cycles include an m-cycle σ_{∞} at ∞.
(2) If T_{f} primitive, then T_{f} doubly transitive unless f is (Möbius equivalent to: modulo linear fractional compositions) Chebychev or cyclic $\left(x \mapsto x^{n}\right)$ [Fr70].

II.B: Further Group translation of Davenport

Key Observations:
(1) Degree m poly. branch cycles include an m-cycle σ_{∞} at ∞.
(2) If T_{f} primitive, then T_{f} doubly transitive unless f is (Möbius equivalent to: modulo linear fractional compositions) Chebychev or cyclic $\left(x \mapsto x^{n}\right)$ [Fr70].
(3) Representation Thm: For (f, g) a Davenport pair:

II.B: Further Group translation of Davenport

Key Observations:
(1) Degree m poly. branch cycles include an m-cycle σ_{∞} at ∞.
(2) If T_{f} primitive, then T_{f} doubly transitive unless f is (Möbius equivalent to: modulo linear fractional compositions) Chebychev or cyclic $\left(x \mapsto x^{n}\right)$ [Fr70].
(3) Representation Thm: For (f, g) a Davenport pair:

- $\operatorname{deg}(f)=\operatorname{deg}(g), \hat{X}_{f}=\hat{X}_{g}$, so $G_{f}=G_{g}$; and
- $T_{f}=T_{g}$ as group representations, but not as permutation representations.

Proof of Degree Equality

- Get branch cycle σ_{∞} in $G_{f, g}$ with $T_{f}\left(\sigma_{\infty}\right)\left(\right.$ resp. $\left.T_{g}\left(\sigma_{\infty}\right)\right)$ an m-cycle (resp. n-cycle).

Proof of Degree Equality

- Get branch cycle σ_{∞} in $G_{f, g}$ with $T_{f}\left(\sigma_{\infty}\right)\left(\right.$ resp. $\left.T_{g}\left(\sigma_{\infty}\right)\right)$ an m-cycle (resp. n-cycle).
- Suppose $(m, n)=d<m$. Consider $\sigma^{\prime}=\sigma_{\infty}^{m}$.

Proof of Degree Equality

- Get branch cycle σ_{∞} in $G_{f, g}$ with $T_{f}\left(\sigma_{\infty}\right)\left(\right.$ resp. $\left.T_{g}\left(\sigma_{\infty}\right)\right)$ an m-cycle (resp. n-cycle).
- Suppose $(m, n)=d<m$. Consider $\sigma^{\prime}=\sigma_{\infty}^{m}$.
- Then $T_{f}\left(\sigma^{\prime}\right)$ fixes all integers; $T_{g}\left(\sigma^{\prime}\right)$ moves each integer.

Proof of Degree Equality

- Get branch cycle σ_{∞} in $G_{f, g}$ with $T_{f}\left(\sigma_{\infty}\right)\left(\right.$ resp. $\left.T_{g}\left(\sigma_{\infty}\right)\right)$ an m-cycle (resp. n-cycle).
- Suppose $(m, n)=d<m$. Consider $\sigma^{\prime}=\sigma_{\infty}^{m}$.
- Then $T_{f}\left(\sigma^{\prime}\right)$ fixes all integers; $T_{g}\left(\sigma^{\prime}\right)$ moves each integer.
- This contradicts Strong Dav. Thm.

Proof of Degree Equality

- Get branch cycle σ_{∞} in $G_{f, g}$ with $T_{f}\left(\sigma_{\infty}\right)\left(\right.$ resp. $\left.T_{g}\left(\sigma_{\infty}\right)\right)$ an m-cycle (resp. n-cycle).
- Suppose $(m, n)=d<m$. Consider $\sigma^{\prime}=\sigma_{\infty}^{m}$.
- Then $T_{f}\left(\sigma^{\prime}\right)$ fixes all integers; $T_{g}\left(\sigma^{\prime}\right)$ moves each integer.
- This contradicts Strong Dav. Thm.
- A fancier version of this gives $\hat{X}_{f}=\hat{X}_{g}$ and $G_{f}=G_{g}$.

II.C: Double Transitivity and Difference sets

Consider zeros $\left\{x_{i}\right\}_{i=1}^{n}$ of $f(x)-z$. Equality of Galois closures \Longrightarrow these are functions of zeros $\left\{y_{i}\right\}_{i=1}^{n}$ of $g(y)-z$ (and vice-versa).

- Normalize numbering: σ_{∞} cycles $x_{i} \mathrm{~s}$ and $y_{i} \mathrm{~s}$.

II. C: Double Transitivity and Difference sets

Consider zeros $\left\{x_{i}\right\}_{i=1}^{n}$ of $f(x)-z$. Equality of Galois closures \Longrightarrow these are functions of zeros $\left\{y_{i}\right\}_{i=1}^{n}$ of $g(y)-z$ (and vice-versa).

- Normalize numbering: σ_{∞} cycles $x_{i} \mathrm{~s}$ and $y_{i} \mathrm{~s}$.

Theorem (Double Transitivity)

T_{f} doubly transitive \Longrightarrow this much stronger conclusion:

$$
x_{1}=y_{1}+y_{\alpha_{2}}+\cdots+y_{\alpha_{k}}, 2 \leq k \leq(n-1) / 2:
$$

The representation space is the same for $x s$ and $y s$.
Write $R_{1}=\left\{1, \alpha_{2}, \ldots, \alpha_{k}\right\} \bmod n$.

Difference Set Argument

Theorem (Multiplier)

(1) Different set: Among nonzero differences from R_{1}, each integer $\{1, \ldots, n-1\}$ occurs $u=k(k-1) /(n-1)$ times.

Difference Set Argument

Theorem (Multiplier)

- Different set: Among nonzero differences from R_{1}, each integer $\{1, \ldots, n-1\}$ occurs $u=k(k-1) /(n-1)$ times.
- The expression for $y_{i} s$ in $x_{j} s$ gives the different set (up to translation) $-R_{1}$.
(2) Acting by σ_{∞} - translating subscripts - gives collections R_{i}, $i=1, \ldots, n$.

Difference Set Argument

Theorem (Multiplier)

(1) Different set: Among nonzero differences from R_{1}, each integer $\{1, \ldots, n-1\}$ occurs $u=k(k-1) /(n-1)$ times.

- The expression for $y_{i} s$ in $x_{j} s$ gives the different set (up to translation) $-R_{1}$.
(2) Acting by σ_{∞} - translating subscripts - gives collections R_{i}, $i=1, \ldots, n$.
(3) \# times $u \bmod n$ appears as a (nonzero) difference from R_{1} equals \# times $\{1, u+1\}$ appears in the union of the $R_{i} s$. (Normalize u as a difference to have 1st integer "1.")

Difference Set Argument

Theorem (Multiplier)

(1)

- Different set: Among nonzero differences from R_{1}, each integer $\{1, \ldots, n-1\}$ occurs $u=k(k-1) /(n-1)$ times.
- The expression for $y_{i} s$ in $x_{j} s$ gives the different set (up to translation) $-R_{1}$.
(2) Acting by σ_{∞} - translating subscripts - gives collections R_{i}, $i=1, \ldots, n$.
(3) \# times $u \bmod n$ appears as a (nonzero) difference from R_{1} equals \# times $\{1, u+1\}$ appears in the union of the $R_{i} s$. (Normalize u as a difference to have 1st integer "1.")
(4) T_{f} doubly transitive $\Leftrightarrow G_{f}(1)$ transitive on $\{2, \ldots, n\}$: \# of appearances of $\{1, u+1\}$ in $\cup_{i} R_{i}$ independent of u.

Part III: What groups give Davenport pairs and how? §III.A: Projective Linear Groups

Finite field \mathbb{F}_{q} (with $q=p^{t}, p$ prime). For $v \geq 2, \mathbb{F}_{q^{v+1}}$ is a dimension $v+1$ vector space over \mathbb{F}_{q}.

- $\mathrm{PGL}_{v+1}\left(\mathbb{F}_{q}\right)=\mathrm{GL}_{v+1}\left(\mathbb{F}_{q}\right) /\left(\mathbb{F}_{q}\right)^{*}$ acts on lines through origin: on the $n=\left(q^{v+1}-1\right)(q-1)$ points of projective v-space.

Part III: What groups give Davenport pairs and how? §III.A: Projective Linear Groups

Finite field \mathbb{F}_{q} (with $q=p^{t}, p$ prime). For $v \geq 2, \mathbb{F}_{q^{v+1}}$ is a dimension $v+1$ vector space over \mathbb{F}_{q}.

- $\mathrm{PGL}_{v+1}\left(\mathbb{F}_{q}\right)=\mathrm{GL}_{v+1}\left(\mathbb{F}_{q}\right) /\left(\mathbb{F}_{q}\right)^{*}$ acts on lines through origin: on the $n=\left(q^{v+1}-1\right)(q-1)$ points of projective v-space.
- Brumer-McLaughlin-Misera-Feit-Thompson-Guralnick-SaxlMüller interactions story told in [UMSt]: Using group theory vs how to study groups. I now outline these points.

Part III: What groups give Davenport pairs and how? §III.A: Projective Linear Groups

Finite field \mathbb{F}_{q} (with $q=p^{t}, p$ prime). For $v \geq 2, \mathbb{F}_{q^{v+1}}$ is a dimension $v+1$ vector space over \mathbb{F}_{q}.

- $\mathrm{PGL}_{v+1}\left(\mathbb{F}_{q}\right)=\mathrm{GL}_{v+1}\left(\mathbb{F}_{q}\right) /\left(\mathbb{F}_{q}\right)^{*}$ acts on lines through origin: on the $n=\left(q^{v+1}-1\right)(q-1)$ points of projective v-space.
- Brumer-McLaughlin-Misera-Feit-Thompson-Guralnick-SaxlMüller interactions story told in [UMSt]: Using group theory vs how to study groups. I now outline these points.
(1) What groups arise as G_{f} with (f, g) a D (avenport) P (air).

Part III: What groups give Davenport pairs and how? §III. A: Projective Linear Groups

Finite field \mathbb{F}_{q} (with $q=p^{t}, p$ prime). For $v \geq 2, \mathbb{F}_{q^{v+1}}$ is a dimension $v+1$ vector space over \mathbb{F}_{q}.

- $\mathrm{PGL}_{v+1}\left(\mathbb{F}_{q}\right)=\mathrm{GL}_{v+1}\left(\mathbb{F}_{q}\right) /\left(\mathbb{F}_{q}\right)^{*}$ acts on lines through origin: on the $n=\left(q^{v+1}-1\right)(q-1)$ points of projective v-space.
- Brumer-McLaughlin-Misera-Feit-Thompson-Guralnick-SaxlMüller interactions story told in [UMSt]: Using group theory vs how to study groups. I now outline these points.
(1) What groups arise as G_{f} with (f, g) a D (avenport) P (air).
(2) From those, how to produce all Davenport pairs.

Part III: What groups give Davenport pairs and how? §III.A: Projective Linear Groups

Finite field \mathbb{F}_{q} (with $q=p^{t}, p$ prime). For $v \geq 2, \mathbb{F}_{q^{v+1}}$ is a dimension $v+1$ vector space over \mathbb{F}_{q}.

- $\mathrm{PGL}_{v+1}\left(\mathbb{F}_{q}\right)=\mathrm{GL}_{v+1}\left(\mathbb{F}_{q}\right) /\left(\mathbb{F}_{q}\right)^{*}$ acts on lines through origin: on the $n=\left(q^{v+1}-1\right)(q-1)$ points of projective v-space.
- Brumer-McLaughlin-Misera-Feit-Thompson-Guralnick-SaxlMüller interactions story told in [UMSt]: Using group theory vs how to study groups. I now outline these points.
(1) What groups arise as G_{f} with (f, g) a D (avenport) P (air).
(2) From those, how to produce all Davenport pairs.
(3) Genus 0 Problem-Thompson Conjecture: From Davenport and related: Only composition factors of $f: \mathbb{P}_{w}^{1} \rightarrow \mathbb{P}_{z}^{1}$ monodromy, $A_{n} \mathrm{~s}$ and $\mathbb{Z} / p \mathrm{~s}$, excluding finitely many exceptions.

Part III: What groups give Davenport pairs and how? §III.A: Projective Linear Groups

Finite field \mathbb{F}_{q} (with $q=p^{t}, p$ prime). For $v \geq 2, \mathbb{F}_{q^{v+1}}$ is a dimension $v+1$ vector space over \mathbb{F}_{q}.

- $\mathrm{PGL}_{v+1}\left(\mathbb{F}_{q}\right)=\mathrm{GL}_{v+1}\left(\mathbb{F}_{q}\right) /\left(\mathbb{F}_{q}\right)^{*}$ acts on lines through origin: on the $n=\left(q^{v+1}-1\right)(q-1)$ points of projective v-space.
- Brumer-McLaughlin-Misera-Feit-Thompson-Guralnick-SaxlMüller interactions story told in [UMSt]: Using group theory vs how to study groups. I now outline these points.
(1) What groups arise as G_{f} with (f, g) a D (avenport) P (air).
(2) From those, how to produce all Davenport pairs.
(3) Genus 0 Problem-Thompson Conjecture: From Davenport and related: Only composition factors of $f: \mathbb{P}_{w}^{1} \rightarrow \mathbb{P}_{z}^{1}$ monodromy, $A_{n} \mathrm{~s}$ and $\mathbb{Z} / p \mathrm{~s}$, excluding finitely many exceptions.
(9) Guralnick conjecture: Precise on actual monodromy of primitive Rational function [Fr05a, §7.2.3].

Why projective Linear Groups arise

(1) $\operatorname{PGL}_{v+1}\left(\mathbb{F}_{q}\right)$ has two (inequivalent) doubly transitive permutation representations: On points and on hyperplanes.

Why projective Linear Groups arise

(1) $\operatorname{PGL}_{v+1}\left(\mathbb{F}_{q}\right)$ has two (inequivalent) doubly transitive permutation representations: On points and on hyperplanes.
(2) An incidence matrix conjugates between them: They are equivalent as group representations.

Why projective Linear Groups arise

(1) $\mathrm{PGL}_{v+1}\left(\mathbb{F}_{q}\right)$ has two (inequivalent) doubly transitive permutation representations: On points and on hyperplanes.
(2) An incidence matrix conjugates between them: They are equivalent as group representations.
(3) Euler's Thm. gives a cyclic generator, γ_{q}, of $\mathbb{F}_{q^{v+1}}^{*}$. Multiplying by γ_{q} on $\mathbb{F}_{q^{v+1}}=F_{q}^{v+1}$ induces an n-cycle in $\mathrm{PGL}_{v+1}\left(\mathbb{F}_{q}\right)$.

Why projective Linear Groups arise
(1) $\mathrm{PGL}_{v+1}\left(\mathbb{F}_{q}\right)$ has two (inequivalent) doubly transitive permutation representations: On points and on hyperplanes.
(2) An incidence matrix conjugates between them: They are equivalent as group representations.
(3) Euler's Thm. gives a cyclic generator, γ_{q}, of $\mathbb{F}_{q^{v+1}}^{*}$. Multiplying by γ_{q} on $\mathbb{F}_{q^{v+1}}=F_{q}^{v+1}$ induces an n-cycle in $\mathrm{PGL}_{v+1}\left(\mathbb{F}_{q}\right)$.
(9) Conjecture [Fr73]: Two equivalent doubly transitive reps. and n-cycle: Except for one of deg 11, all are nearly $\mathrm{PGL}_{v+1} \mathrm{~s}$. Proof (from classification) [Fr99, §9], based on [CKS76].

III.B: Punchlines on Davenport (f indecomposable)

© Davenport's Question: \exists DPs over \mathbb{Q} ? Multiplier Theorem $\Longrightarrow g$ is complex conjugate to f. No DPs over \mathbb{Q}. Equivalent to σ_{∞} not conjugate to σ_{∞}^{-1}. No use of classification; first use of Branch Cycle Argument.

III.B: Punchlines on Davenport (f indecomposable)

(1) Davenport's Question: \exists DPs over \mathbb{Q} ? Multiplier Theorem $\Longrightarrow g$ is complex conjugate to f. No DPs over \mathbb{Q}. Equivalent to σ_{∞} not conjugate to σ_{∞}^{-1}. No use of classification; first use of Branch Cycle Argument.
(c) Answer to Schinzel's Problem: If $f(x)-h(y)$ factors (over \mathbb{C}), then $h=g\left(h_{2}(y)\right)$ with (f, g) a DP over some field.

III.B: Punchlines on Davenport (f indecomposable)

(1) Davenport's Question: \exists DPs over \mathbb{Q} ? Multiplier Theorem $\Longrightarrow g$ is complex conjugate to f. No DPs over \mathbb{Q}. Equivalent to σ_{∞} not conjugate to σ_{∞}^{-1}.
No use of classification; first use of Branch Cycle Argument.
(2) Answer to Schinzel's Problem: If $f(x)-h(y)$ factors (over \mathbb{C}), then $h=g\left(h_{2}(y)\right)$ with (f, g) a DP over some field.
(3) Degrees of DPs over some number field K :

$$
n=7,11,13,15,21,31
$$

For each n, we know exactly what K s carry DPs.

III.C: From III.B, Hints at the Genus 0 Problem

(1) For $n=7,13,15$ (resp. described in [Fr80, §B], [CoCa99], [Fr99,§8]) there are non-trivial Möbius equivalence families of Davenport pairs. For $n=7=1+2+2^{2}, G_{f}=\mathrm{PGL}_{3}(\mathbb{Z} / 2)$.

III.C: From III.B, Hints at the Genus 0 Problem

(1) For $n=7,13,15$ (resp. described in [Fr80, §B], [CoCa99], [Fr99,§8]) there are non-trivial Möbius equivalence families of Davenport pairs. For $n=7=1+2+2^{2}, G_{f}=\operatorname{PGL}_{3}(\mathbb{Z} / 2)$.
(2) $n=7$ branch cycles: $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right) ; \sigma_{1}, \sigma_{2}, \sigma_{3}$ involutions, each fixing the 3 points, on some hyperplane; σ_{4} a 7 -cycle.

III.C: From III.B, Hints at the Genus 0 Problem

(1) For $n=7,13,15$ (resp. described in [Fr80, §B], [CoCa99], [Fr99,§8]) there are non-trivial Möbius equivalence families of Davenport pairs. For $n=7=1+2+2^{2}, G_{f}=\mathrm{PGL}_{3}(\mathbb{Z} / 2)$.
(2) $n=7$ branch cycles: $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right) ; \sigma_{1}, \sigma_{2}, \sigma_{3}$ involutions, each fixing the 3 points, on some hyperplane; σ_{4} a 7 -cycle.

- Riemann-Hurwitz: Cover with these branch cycles has genus

$$
\mathbf{g}_{7}=0: 2\left(7+\mathbf{g}_{7}-1\right)=\sum_{i=1}^{4} \operatorname{ind}\left(\sigma_{i}\right)=3 \cdot 2+6 \Longrightarrow \mathbf{g}_{7}=0 .
$$

III.C: From III.B, Hints at the Genus 0 Problem

(1) For $n=7,13,15$ (resp. described in [Fr80, §B], [CoCa99], [Fr99,§8]) there are non-trivial Möbius equivalence families of Davenport pairs. For $n=7=1+2+2^{2}, G_{f}=\operatorname{PGL}_{3}(\mathbb{Z} / 2)$.
(2) $n=7$ branch cycles: $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right) ; \sigma_{1}, \sigma_{2}, \sigma_{3}$ involutions, each fixing the 3 points, on some hyperplane; σ_{4} a 7 -cycle.

- Riemann-Hurwitz: Cover with these branch cycles has genus $\mathbf{g}_{7}=0: 2\left(7+\mathbf{g}_{7}-1\right)=\sum_{i=1}^{4} \operatorname{ind}\left(\sigma_{i}\right)=3 \cdot 2+6 \Longrightarrow \mathbf{g}_{7}=0$.
(3) Two genus $0 j$-line covers parametrize the (f, g) pairs - two reduced Hurwitz spaces - conjugate over $\mathbb{Q}(\sqrt{-7})$.

III.C: From III.B, Hints at the Genus 0 Problem

(1) For $n=7,13,15$ (resp. described in [Fr80, §B], [CoCa99], [Fr99,§8]) there are non-trivial Möbius equivalence families of Davenport pairs. For $n=7=1+2+2^{2}, G_{f}=\mathrm{PGL}_{3}(\mathbb{Z} / 2)$.
(2) $n=7$ branch cycles: $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right) ; \sigma_{1}, \sigma_{2}, \sigma_{3}$ involutions, each fixing the 3 points, on some hyperplane; σ_{4} a 7 -cycle.

- Riemann-Hurwitz: Cover with these branch cycles has genus

$$
\mathbf{g}_{7}=0: 2\left(7+\mathbf{g}_{7}-1\right)=\sum_{i=1}^{4} \operatorname{ind}\left(\sigma_{i}\right)=3 \cdot 2+6 \Longrightarrow \mathbf{g}_{7}=0 .
$$

(3) Two genus $0 j$-line covers parametrize the (f, g) pairs - two reduced Hurwitz spaces - conjugate over $\mathbb{Q}(\sqrt{-7})$.
(9) A cover gives a bundle: Both families parametrize the same family of rank 7 bundles (over \mathbb{Q}). Similarly, for $n=13$ and 15 .

III.C: From III.B, Hints at the Genus 0 Problem

(1) For $n=7,13,15$ (resp. described in [Fr80, §B], [CoCa99], [Fr99,§8]) there are non-trivial Möbius equivalence families of Davenport pairs. For $n=7=1+2+2^{2}, G_{f}=\mathrm{PGL}_{3}(\mathbb{Z} / 2)$.
(2) $n=7$ branch cycles: $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right) ; \sigma_{1}, \sigma_{2}, \sigma_{3}$ involutions, each fixing the 3 points, on some hyperplane; σ_{4} a 7 -cycle.

- Riemann-Hurwitz: Cover with these branch cycles has genus

$$
\mathbf{g}_{7}=0: 2\left(7+\mathbf{g}_{7}-1\right)=\sum_{i=1}^{4} \operatorname{ind}\left(\sigma_{i}\right)=3 \cdot 2+6 \Longrightarrow \mathbf{g}_{7}=0 .
$$

(3) Two genus $0 j$-line covers parametrize the (f, g) pairs - two reduced Hurwitz spaces - conjugate over $\mathbb{Q}(\sqrt{-7})$.
(9) A cover gives a bundle: Both families parametrize the same family of rank 7 bundles (over \mathbb{Q}). Similarly, for $n=13$ and 15 .
(6) Ron Solomon [So01] says things about "groups appearing in Nature:" Do rational functions appear in nature?

Bibliography

[A-O-S85] M. Aschbacher and L. Scott, Maximal subgroups of finite groups, J. Algebra 92 (1985), 44-80.
[CoCa99] J.-M. Couveignes and P. Cassou-Noguès, Factorisations explicites de $\mathrm{g}(\mathrm{y})-\mathrm{h}(\mathrm{z})$, Acta Arith. 87 (1999), no. 4, 291-317.
[CKS76] C.W. Curtis, W.M. Kantor and G.M. Seitz, 2-transitive permutation reps. of the finite Chevalley groups, TAMS 218 (1976), 1-59.
[DL63] H. Davenport and D.J. Lewis, Notes on Congruences (I), Qt. J. Math. Oxford (2) 14 (1963), 51-60.
[Fr73] M. Fried, Field of definition of function fields and ... reducibility of polynomials in two variables, III. J. Math. 17 (1973), 128-146. [Fr80] M. Fried, Exposition on an Arithmetic-Group Theoretic Connection via Riemann's Existence Theorem, Santa Cruz Conf. on Finite Groups, A.M.S. Pub. 37 (1980), 571-601.
[Fr99] M. Fried, Variables Separated Polynomials and Moduli Spaces, No. Th. in Prog., Schinzel Festschrift, Sum. 1997, Walter de Gruyter, Berlin-NY (Feb. 1999), 169-228.
[Fr05a] M. Fried, Relating two genus 0 problems of John Thompson, Volume for John Thompson's 70th birthday, in Progress in Galois Theory, H. Voelklein and T. Shaska editors 2005 Springer Science, 51-85.
[Fr05b] M. Fried, The place of exceptional covers among all diophantine relations, J. Finite Fields 11 (2005) 367-433.
[FGS93] M. Fried, R. Guralnick and J. Saxl, Schur Covers and Carlitz's Conjecture, Israel J.; Thompson Volume 82 (1993), 157-225.
[GLS] D. Gorenstein, R. Lyons, R. Solomon, Classification of Finite
Simple Groups, No. 3, Math. Surveys and Monographs, 40
ISBN:0821803913.
[LPS] M. Liebeck, C. Praeger, J. Saxl, Maximal factorizations of finite simple groups Mem. AMS 86 \#432 (1990).
[Mc67] C. MacCluer, On a conjecture of Davenport and Lewis concerning exceptional poly- nomials, Acta. Arith. 12 (1967), 289-299.
[Mü95] P. Müller, Primitive monodromy groups of polynomials, Proceedings of the Recent developments in the Inverse Galois Problem conference, vol. 186, 1995, AMS Cont. Math series, 385-401.
[Sc71] A. Schinzel, Reducibility of Polynomials, Int. Cong. Math. Nice 1970 (1971), Gauthier-Villars, 491-496.
[So01] R. Solomon, A Brief History of the Classification of Finite Simple Groups, BAMS 38 (3) (2001), 315-352.
[UMSt] http://www.math.uci.edu/~mfried/paplist-cov/UMStory.html.

