Variables Separated Equations and Finite Simple Groups 2PM, April 6, 2010: Mike Fried, Emeritus UC Irvine [UmSt]

April 7, 2010

Algebraic equations in separated variables:

 $\{(x, y)|f(x) - g(y) = 0\}.$

Variables Separated Equations

Variables Separated Equations and Finite Simple Groups 2PM, April 6, 2010: Mike Fried, Emeritus UC Irvine [UmSt]

April 7, 2010

Algebraic equations in separated variables:

$$\{(x, y)|f(x) - g(y) = 0\}.$$

Overhead Projective Research Projective Research Projections to the (Riemann sphere) z-line P¹_z = C ∪ {∞}:

$$\begin{split} \mathrm{pr}_{x} &: X_{f,g} \to \mathbb{P}^{1}_{x} \text{ and } \mathrm{pr}_{y} : X_{f,g} \to \mathbb{P}^{1}_{y}; \\ f &: \mathbb{P}^{1}_{x} \to \mathbb{P}^{1}_{z} \text{ and } g : \mathbb{P}^{1}_{y} \rightleftharpoons \mathbb{P}^{1}_{z} \text{ for all } x \in \mathbb{P}^{1}_{z} \end{split}$$

 Davenport's: Suppose f, g ∈ K[x] \ K has exactly the same ranges on almost all residue fields: Related in obvious way - f(x) = g(ax + b), a, b constant? [Sc71], [Fr73].

- Davenport's: Suppose f, g ∈ K[x] \ K has exactly the same ranges on almost all residue fields: Related in obvious way - f(x) = g(ax + b), a, b constant? [Sc71], [Fr73].
- Schinzel's: Suppose f(x) g(y) reducible: Are f, g related in an obvious way?

- Davenport's: Suppose f, g ∈ K[x] \ K has exactly the same ranges on almost all residue fields: Related in obvious way - f(x) = g(ax + b), a, b constant? [Sc71], [Fr73].
- Schinzel's: Suppose f(x) g(y) reducible: Are f, g related in an obvious way?
- Ist Genus 0 Problem: What are possible monodromy groups G_f (f a polynomial or rational function)? [Fr05a, §7.2]

- Davenport's: Suppose f, g ∈ K[x] \ K has exactly the same ranges on almost all residue fields: Related in obvious way - f(x) = g(ax + b), a, b constant? [Sc71], [Fr73].
- Schinzel's: Suppose f(x) g(y) reducible: Are f, g related in an obvious way?
- Ist Genus 0 Problem: What are possible monodromy groups G_f (f a polynomial or rational function)? [Fr05a, §7.2]
- 2nd Genus 0 problem: Relate characters of the Monster simple group and genus 0 modular curves.

• • = • • = •

Indecomposability condition: We will assume f is not a composition of lower degree polynomials.

9 Part I: Davenport and Schinzel Problems

Indecomposability condition: We will assume f is not a composition of lower degree polynomials.

- **9** Part I: Davenport and Schinzel Problems
 - §I.A. The dihedral group with observations
 - §I.B. Splitting variables

2

- §I.C. Introducing Galois groups
- §I.D. Translating Davenport to Group Theory

Indecomposability condition: We will assume f is not a composition of lower degree polynomials.

- **9** Part I: Davenport and Schinzel Problems
- I.A. The dihedral group with observations
 - §I.B. Splitting variables
 - §I.C. Introducing Galois groups
 - §I.D. Translating Davenport to Group Theory
- **3** Part II: Primitivity, cycles, Simple Group Classification

Indecomposability condition: We will assume f is not a composition of lower degree polynomials.

- **9** Part I: Davenport and Schinzel Problems
- I.A. The dihedral group with observations
 - §I.B. Splitting variables
 - §I.C. Introducing Galois groups
 - §I.D. Translating Davenport to Group Theory
- **9** Part II: Primitivity, cycles, Simple Group Classification
 - §II.A. Translating Primitivity for $f: X \to \mathbb{P}^1_z$
 - §II.B. Further Group translation of Davenport
 - §II.C. Double Transitivity and Difference sets

Indecomposability condition: We will assume f is not a composition of lower degree polynomials.

- **9** Part I: Davenport and Schinzel Problems
- I.A. The dihedral group with observations
 - §I.B. Splitting variables
 - §I.C. Introducing Galois groups
 - §I.D. Translating Davenport to Group Theory
- **3** Part II: Primitivity, cycles, Simple Group Classification
 - §II.A. Translating Primitivity for $f: X \to \mathbb{P}^1_z$
 - §II.B. Further Group translation of Davenport
 - §II.C. Double Transitivity and Difference sets
- **9** Part III. What groups give Davenport pairs and how?

Indecomposability condition: We will assume f is not a composition of lower degree polynomials.

- **9** Part I: Davenport and Schinzel Problems
- I.A. The dihedral group with observations
 - §I.B. Splitting variables
 - §I.C. Introducing Galois groups
 - §I.D. Translating Davenport to Group Theory
- **3** Part II: Primitivity, cycles, Simple Group Classification
 - §II.A. Translating Primitivity for $f: X \to \mathbb{P}^1_z$
 - §II.B. Further Group translation of Davenport
 - §II.C. Double Transitivity and Difference sets
- Section 2 Part III. What groups give Davenport pairs and how?
 - §III.A. Projective Linear Groups

6

- §III.B. Punchlines on Davenport (f indecomposable)
- §III.C. From III.B, Hints at the Genus 0 Problem

Part I: Davenport and Schinzel Problems I.A: Chebychev polynomials are dihedral polynomials

Regard any rational function f in w – degree m – as a cover of a complex sphere by a complex sphere:

$$f: \mathbb{P}^1_w = \mathbb{C}_w \cup \{\infty\} \to \mathbb{P}^1_z = \mathbb{C}_z \cup \{\infty\}.$$

Then, f has finitely many (branch) points, z', over which it *ramifies*: Instead of m distinct values of w, there are fewer. Designate branch points by $\{z_1, \ldots, z_r\} = \mathbf{z}$.

• Calculus: Uses $T_m(\cos(\theta)) = \cos(m\theta)$, with $T_m(w) = z$: mth Chebychev polynomial.

Part I: Davenport and Schinzel Problems I.A: Chebychev polynomials are dihedral polynomials

Regard any rational function f in w – degree m – as a cover of a complex sphere by a complex sphere:

$$f: \mathbb{P}^1_w = \mathbb{C}_w \cup \{\infty\} \to \mathbb{P}^1_z = \mathbb{C}_z \cup \{\infty\}.$$

Then, f has finitely many (branch) points, z', over which it *ramifies*: Instead of m distinct values of w, there are fewer. Designate branch points by $\{z_1, \ldots, z_r\} = \mathbf{z}$.

- Calculus: Uses $T_m(\cos(\theta)) = \cos(m\theta)$, with $T_m(w) = z$: *m*th *Chebychev* polynomial.
- Goal: Express cos(θ)^m as a sum of cos(kθ) terms, 0 ≤ k ≤ m.
 So, we can integrate any polynomial in cos(θ).

Part I: Davenport and Schinzel Problems I.A: Chebychev polynomials are dihedral polynomials

Regard any rational function f in w – degree m – as a cover of a complex sphere by a complex sphere:

$$f: \mathbb{P}^1_w = \mathbb{C}_w \cup \{\infty\} \to \mathbb{P}^1_z = \mathbb{C}_z \cup \{\infty\}.$$

Then, f has finitely many (branch) points, z', over which it *ramifies*: Instead of m distinct values of w, there are fewer. Designate branch points by $\{z_1, \ldots, z_r\} = \mathbf{z}$.

- Calculus: Uses $T_m(\cos(\theta)) = \cos(m\theta)$, with $T_m(w) = z$: mth Chebychev polynomial.
- Goal: Express cos(θ)^m as a sum of cos(kθ) terms, 0 ≤ k ≤ m.
 So, we can integrate any polynomial in cos(θ).
- Trick: Induct on m to find $T_m^*(w) = 2T_m(w/2)$ so $T_m^*(u+1/u) = u^m + 1/u^m$. Then substitute $u \mapsto e^{2\pi i \theta}$.

• Select a point $z_0 \in \mathbb{P}^1_z \setminus z \stackrel{\text{def}}{=} U_z$. Use *classical generators* of $\pi_1(U_z, z_0)$, P_1, \ldots, P_r , based at z_0 around z.

- Select a point $z_0 \in \mathbb{P}^1_z \setminus z \stackrel{\text{def}}{=} U_z$. Use *classical generators* of $\pi_1(U_z, z_0), P_1, \ldots, P_r$, based at z_0 around z.
- Label points of P¹_w over z₀ as {1',..., m'}. Each P_i is a loop around z_{τ(i)} where τ is a permutation of {1,..., r}.

- Select a point $z_0 \in \mathbb{P}^1_z \setminus z \stackrel{\text{def}}{=} U_z$. Use *classical generators* of $\pi_1(U_z, z_0), P_1, \ldots, P_r$, based at z_0 around z.
- Label points of P¹_w over z₀ as {1',...,m'}. Each P_i is a loop around z_{τ(i)} where τ is a permutation of {1,...,r}.
- Restrict f over pullback U_w ⊂ P¹_w of U_z in P¹_w. Unique path lift of P_i, starting at j' ∈ {1',..., m'} → endpoint j''. Gives a permutation σ_i of {1',..., m'}.

- Select a point $z_0 \in \mathbb{P}^1_z \setminus z \stackrel{\text{def}}{=} U_z$. Use *classical generators* of $\pi_1(U_z, z_0), P_1, \ldots, P_r$, based at z_0 around z.
- Label points of P¹_w over z₀ as {1',...,m'}. Each P_i is a loop around z_{τ(i)} where τ is a permutation of {1,...,r}.
- Restrict f over pullback U_w ⊂ P¹_w of U_z in P¹_w. Unique path lift of P_i, starting at j' ∈ {1',..., m'} → endpoint j''. Gives a permutation σ_i of {1',..., m'}.
- (σ₁,...,σ_r) = σ − branch cycles for f − ordered from classical generators emanating in order clockwise from z₀.

- Select a point $z_0 \in \mathbb{P}^1_z \setminus z \stackrel{\text{def}}{=} U_z$. Use *classical generators* of $\pi_1(U_z, z_0), P_1, \ldots, P_r$, based at z_0 around z.
- Label points of P¹_w over z₀ as {1',...,m'}. Each P_i is a loop around z_{τ(i)} where τ is a permutation of {1,...,r}.
- Restrict f over pullback $U_{w} \subset \mathbb{P}^{1}_{w}$ of U_{z} in \mathbb{P}^{1}_{w} . Unique path lift of P_{i} , starting at $j' \in \{1', \ldots, m'\} \mapsto$ endpoint j''. Gives a permutation σ_{i} of $\{1', \ldots, m'\}$.
- (σ₁,..., σ_r) = σ − branch cycles for f − ordered from classical generators emanating in order clockwise from z₀.
 - Generation: $\langle \sigma_1, \ldots, \sigma_r \rangle = G_f \leq S_m$ is group of smallest Galois cover of \mathbb{P}^1_z over \mathbb{C} factoring through \mathbb{P}^1_w . *Call f a G_f cover* (T_m is a dihedral cover).
 - Conjugacy classes: the σ_i s represent r conjugacy classes C in G_f with well-defined multiplicity.
 - **③** Product-one: $\sigma_1 \cdots \sigma_r = 1$.

I.B: Splitting variables

• Separated variables \Rightarrow introduce z: f(x) - z = 0 and g(y) - z = 0. Express by covers:

I.B: Splitting variables

- Separated variables \Rightarrow introduce z: f(x) - z = 0 and g(y) - z = 0. Express by covers:
- $f : \mathbb{P}^1_x \to \mathbb{P}^1_z$ and $g : \mathbb{P}^1_y \to \mathbb{P}^1_z$ (added ∞ ; degrees m and n). Note: Problem not changed by replacing (f, g) by $(\alpha \circ f \circ \beta, \alpha \circ g \circ \gamma)$ with α, β, γ affine transformations.

I.B: Splitting variables

- Separated variables \Rightarrow introduce z: f(x) - z = 0 and g(y) - z = 0. Express by covers:
- $f : \mathbb{P}^1_x \to \mathbb{P}^1_z$ and $g : \mathbb{P}^1_y \to \mathbb{P}^1_z$ (added ∞ ; degrees m and n). Note: Problem not changed by replacing (f, g) by $(\alpha \circ f \circ \beta, \alpha \circ g \circ \gamma)$ with α, β, γ affine transformations.
- Fiber product denoted $\mathbb{P}^1_x \times_{\mathbb{P}^1_z} \mathbb{P}^1_y$:

$$\{(x', y') \mid f(x') = g(y')\}.$$

But this will have singularities. We want non-singular (*normalization*) of set-theoretic fiber product.

I.C: More on Galois closure of f

Galois closure covers f̂ : X̂_f → P¹_z (resp. ĝ : X̂_g → P¹_z): connected component of *m*-fold (resp. *n*-fold) fiber product of f (resp. g), minus fat diagonal.

I.C: More on Galois closure of f

- Galois closure covers *f* : *X̂_f* → ℙ¹_z (resp. *ĝ* : *X̂_g* → ℙ¹_z): connected component of *m*-fold (resp. *n*-fold) fiber product of *f* (resp. *g*), minus *fat diagonal*.
- S_m permutes coordinates: G_f is subgroup of S_m fixing \hat{X}_f ; Denote the permutation representation by T_f .

I.C: More on Galois closure of f

- Galois closure covers *f̂* : *X̂_f* → ℙ¹_z (resp. *ĝ* : *X̂_g* → ℙ¹_z): connected component of *m*-fold (resp. *n*-fold) fiber product of *f* (resp. *g*), minus *fat diagonal*.
- S_m permutes coordinates: G_f is subgroup of S_m fixing \hat{X}_f ; Denote the permutation representation by T_f .
- Some control of \hat{f} and \hat{g} over the maximal cover $Z \to \mathbb{P}^1_z$ through which they both factor:

$$G_{f,g} = G_f \times_{G(Z/\mathbb{P}^1_z)} G_g.$$

Projects to G_f and G_g , inducing reps. T_f and T_g .

I.D: Translating Davenport to Group Theory Start of *monodromy method*

As expected, particular problems require an expert to *translate*: Use $C(hebotarev) D(ensity) T(heorem)^+$

Theorem (Strong Davenport)

Equivalent to (f,g) a Davenport pair: $\forall \sigma \in G_{f,g}$, $T_f(\sigma)$ fixes an integer $\Leftrightarrow T_g(\sigma)$ fixes an integer.

The + above CDT: Usual rough result is here precise.

If conclusion reduced mod prime *p* holds, then ranges of *f* and *g* mod *p* are the same [DL63], [Fr05b, Princ. 3.1], [Mc67].

I.D: Translating Davenport to Group Theory Start of *monodromy method*

As expected, particular problems require an expert to *translate*: Use $C(hebotarev) D(ensity) T(heorem)^+$

Theorem (Strong Davenport)

Equivalent to (f,g) a Davenport pair: $\forall \sigma \in G_{f,g}$, $T_f(\sigma)$ fixes an integer $\Leftrightarrow T_g(\sigma)$ fixes an integer.

The + above CDT: Usual rough result is here precise.

- If conclusion reduced mod prime *p* holds, then ranges of *f* and *g* mod *p* are the same [DL63], [Fr05b, Princ. 3.1], [Mc67].
- Actual Davenport pairs have equality in the ranges without exception, (you might expect only near equality).

I.D: Translating Davenport to Group Theory Start of *monodromy method*

As expected, particular problems require an expert to *translate*: Use $C(hebotarev) D(ensity) T(heorem)^+$

Theorem (Strong Davenport)

Equivalent to (f,g) a Davenport pair: $\forall \sigma \in G_{f,g}$, $T_f(\sigma)$ fixes an integer $\Leftrightarrow T_g(\sigma)$ fixes an integer.

The + above CDT: Usual rough result is here precise.

- If conclusion reduced mod prime *p* holds, then ranges of *f* and *g* mod *p* are the same [DL63], [Fr05b, Princ. 3.1], [Mc67].
- Actual Davenport pairs have equality in the ranges without exception, (you might expect only near equality).
- Natural pairs come with equality of ranges for all primes.

 Group Problem P₁: What groups (permutation pairs) give such a G_{f,g}? How does this relate to simple group classification?

- Group Problem P₁: What groups (permutation pairs) give such a G_{f,g}? How does this relate to simple group classification?
- Converse Problem P₂: Even answering P₁, from whence polynomials (f, g) satisfying Davenport?

- Group Problem P₁: What groups (permutation pairs) give such a G_{f,g}? How does this relate to simple group classification?
- Converse Problem P₂: Even answering P₁, from whence polynomials (f, g) satisfying Davenport?
- **③** Our hypothesis: f indecomposable \Leftrightarrow G_f is primitive.

- Group Problem P₁: What groups (permutation pairs) give such a G_{f,g}? How does this relate to simple group classification?
- Converse Problem P₂: Even answering P₁, from whence polynomials (f, g) satisfying Davenport?
- **③** Our hypothesis: f indecomposable $\Leftrightarrow G_f$ is primitive.
 - Primitive: No group properly between G_f and $G_f(1) = \{ \sigma \in G_f \mid T_f(\sigma)(1) = 1 \}.$
 - Doubly Transitive: G_f(1) transitive on {2,..., m}
 ⇒ primitive.

Part II: Primitivity, cycles, Simple Group Classification II.A: Translating Primitivity for $f : X \to \mathbb{P}^1_z$

Primitive group template of 5 patterns: 4 from (*almost*) simple groups; rest from *affine groups* [A-O-S85], [FGS93, §13]. Classifying Doubly transitive groups is easier.

If group is not primitive, even the classification isn't helpful.

• G_f primitive \Leftrightarrow f factors through no proper cover.

Part II: Primitivity, cycles, Simple Group Classification II.A: Translating Primitivity for $f : X \to \mathbb{P}^1_z$

Primitive group template of 5 patterns: 4 from (*almost*) simple groups; rest from *affine groups* [A-O-S85], [FGS93, §13]. Classifying Doubly transitive groups is easier.

If group is *not* primitive, even the classification isn't helpful.

- G_f primitive \Leftrightarrow f factors through no proper cover.
- G_f doubly transitive ⇔ X ×_{P¹_z} X has exactly two irreducible components (one the diagonal).

Part II: Primitivity, cycles, Simple Group Classification II.A: Translating Primitivity for $f : X \to \mathbb{P}^1_z$

Primitive group template of 5 patterns: 4 from (*almost*) simple groups; rest from *affine groups* [A-O-S85], [FGS93, §13]. Classifying Doubly transitive groups is easier.

If group is not primitive, even the classification isn't helpful.

- G_f primitive \Leftrightarrow f factors through no proper cover.
- G_f doubly transitive ⇔ X ×_{P¹_z} X has exactly two irreducible components (one the diagonal).
- Doubly Transitive $\Leftrightarrow (f(x) f(y)/(x y)$ irreducible.
II.B: Further Group translation of Davenport

Key Observations:

1 Degree *m* poly. branch cycles include an *m*-cycle σ_{∞} at ∞ .

II.B: Further Group translation of Davenport

Key Observations:

- **1** Degree *m* poly. *branch cycles* include an *m*-cycle σ_{∞} at ∞ .
- If T_f primitive, then T_f doubly transitive unless f is (Möbius equivalent to: modulo linear fractional compositions) Chebychev or cyclic (x → xⁿ) [Fr70].

Key Observations:

- **1** Degree *m* poly. *branch cycles* include an *m*-cycle σ_{∞} at ∞ .
- If T_f primitive, then T_f doubly transitive unless f is (Möbius equivalent to: modulo linear fractional compositions) Chebychev or cyclic (x → xⁿ) [Fr70].
- **③** Representation Thm: For (f, g) a Davenport pair:

Key Observations:

- **1** Degree *m* poly. *branch cycles* include an *m*-cycle σ_{∞} at ∞ .
- If *T_f primitive*, then *T_f doubly transitive* unless *f* is (*Möbius equivalent to*: modulo linear fractional compositions) Chebychev or cyclic (*x* → *xⁿ*) [Fr70].
- **③** Representation Thm: For (f, g) a Davenport pair:
 - $\deg(f) = \deg(g)$, $\hat{X}_f = \hat{X}_g$, so $G_f = G_g$; and
 - $T_f = T_g$ as group representations, but not as permutation representations.

• Get branch cycle σ_{∞} in $G_{f,g}$ with $T_f(\sigma_{\infty})$ (resp. $T_g(\sigma_{\infty})$) an *m*-cycle (resp. *n*-cycle).

- Get branch cycle σ_{∞} in $G_{f,g}$ with $T_f(\sigma_{\infty})$ (resp. $T_g(\sigma_{\infty})$) an *m*-cycle (resp. *n*-cycle).
- Suppose (m, n) = d < m. Consider $\sigma' = \sigma_{\infty}^{m}$.

- Get branch cycle σ_{∞} in $G_{f,g}$ with $T_f(\sigma_{\infty})$ (resp. $T_g(\sigma_{\infty})$) an *m*-cycle (resp. *n*-cycle).
- Suppose (m, n) = d < m. Consider $\sigma' = \sigma_{\infty}^{m}$.
- Then $T_f(\sigma')$ fixes all integers; $T_g(\sigma')$ moves each integer.

- Get branch cycle σ_{∞} in $G_{f,g}$ with $T_f(\sigma_{\infty})$ (resp. $T_g(\sigma_{\infty})$) an *m*-cycle (resp. *n*-cycle).
- Suppose (m, n) = d < m. Consider $\sigma' = \sigma_{\infty}^{m}$.
- Then $T_f(\sigma')$ fixes all integers; $T_g(\sigma')$ moves each integer.
- This contradicts Strong Dav. Thm.

- Get branch cycle σ_{∞} in $G_{f,g}$ with $T_f(\sigma_{\infty})$ (resp. $T_g(\sigma_{\infty})$) an *m*-cycle (resp. *n*-cycle).
- Suppose (m, n) = d < m. Consider $\sigma' = \sigma_{\infty}^{m}$.
- Then $T_f(\sigma')$ fixes all integers; $T_g(\sigma')$ moves each integer.
- This contradicts Strong Dav. Thm.
- A fancier version of this gives $\hat{X}_f = \hat{X}_g$ and $G_f = G_g$.

II.C: Double Transitivity and Difference sets

Consider zeros $\{x_i\}_{i=1}^n$ of f(x) - z. Equality of Galois closures \implies these are functions of zeros $\{y_i\}_{i=1}^n$ of g(y) - z (and vice-versa).

• Normalize numbering: σ_{∞} cycles x_i s and y_i s.

II.C: Double Transitivity and Difference sets

Consider zeros $\{x_i\}_{i=1}^n$ of f(x) - z. Equality of Galois closures \implies these are functions of zeros $\{y_i\}_{i=1}^n$ of g(y) - z (and vice-versa).

• Normalize numbering: σ_{∞} cycles x_i s and y_i s.

Theorem (Double Transitivity)

 T_f doubly transitive \implies this much stronger conclusion:

$$x_1 = y_1 + y_{\alpha_2} + \cdots + y_{\alpha_k}, 2 \le k \le (n-1)/2$$
:

The representation space is the same for x s and y s. Write $R_1 = \{1, \alpha_2, \dots, \alpha_k\} \mod n$.

Theorem (Multiplier)

Different set: Among nonzero differences from R₁, each integer {1,..., n-1} occurs u = k(k-1)/(n-1) times.

Theorem (Multiplier)

- Different set: Among nonzero differences from R_1 , each integer $\{1, \ldots, n-1\}$ occurs u = k(k-1)/(n-1) times.
 - The expression for $y_i s$ in $x_j s$ gives the different set (up to translation) $-R_1$.
 - 2 Acting by σ_{∞} translating subscripts gives collections R_i , i = 1, ..., n.

Theorem (Multiplier)

- Different set: Among nonzero differences from R_1 , each integer $\{1, \ldots, n-1\}$ occurs u = k(k-1)/(n-1) times.
 - The expression for $y_i s$ in $x_j s$ gives the different set (up to translation) $-R_1$.
 - Acting by σ_∞ translating subscripts gives collections R_i, i = 1,..., n.
 - # times u mod n appears as a (nonzero) difference from R₁ equals # times {1, u + 1} appears in the union of the R_is. (Normalize u as a difference to have 1st integer "1.")

Theorem (Multiplier)

- Different set: Among nonzero differences from R_1 , each integer $\{1, \ldots, n-1\}$ occurs u = k(k-1)/(n-1) times.
 - The expression for $y_i s$ in $x_j s$ gives the different set (up to translation) $-R_1$.
 - 2 Acting by σ_{∞} translating subscripts gives collections R_i , i = 1, ..., n.
 - # times u mod n appears as a (nonzero) difference from R₁ equals # times {1, u + 1} appears in the union of the R_is. (Normalize u as a difference to have 1st integer "1.")
 - *T_f* doubly transitive ⇔ *G_f*(1) transitive on {2,..., *n*}:
 # of appearances of {1, *u* + 1} in ∪_{*i*}*R_i* independent of *u*.

Finite field \mathbb{F}_q (with $q = p^t$, p prime). For $v \ge 2$, $\mathbb{F}_{q^{v+1}}$ is a dimension v + 1 vector space over \mathbb{F}_q .

 PGL_{v+1}(F_q) = GL_{v+1}(F_q)/(F_q)* acts on lines through origin: on the n = (q^{v+1} - 1)(q - 1) points of projective v-space.

Finite field \mathbb{F}_q (with $q = p^t$, p prime). For $v \ge 2$, $\mathbb{F}_{q^{v+1}}$ is a dimension v + 1 vector space over \mathbb{F}_q .

- PGL_{v+1}(F_q) = GL_{v+1}(F_q)/(F_q)* acts on lines through origin: on the n = (q^{v+1} - 1)(q - 1) points of projective v-space.
- Brumer-McLaughlin-Misera-Feit-Thompson-Guralnick-Saxl-Müller interactions story told in [UMSt]: Using group theory vs how to study groups. I now outline these points.

Finite field \mathbb{F}_q (with $q = p^t$, p prime). For $v \ge 2$, $\mathbb{F}_{q^{v+1}}$ is a dimension v + 1 vector space over \mathbb{F}_q .

- $\operatorname{PGL}_{\nu+1}(\mathbb{F}_q) = \operatorname{GL}_{\nu+1}(\mathbb{F}_q)/(\mathbb{F}_q)^*$ acts on lines through origin: on the $n = (q^{\nu+1} - 1)(q - 1)$ points of projective ν -space.
- Brumer-McLaughlin-Misera-Feit-Thompson-Guralnick-Saxl-Müller interactions story told in [UMSt]: Using group theory vs how to study groups. I now outline these points.
 - **(**) What groups arise as G_f with (f, g) a D(avenport)P(air).

Finite field \mathbb{F}_q (with $q = p^t$, p prime). For $v \ge 2$, $\mathbb{F}_{q^{v+1}}$ is a dimension v + 1 vector space over \mathbb{F}_q .

- $\operatorname{PGL}_{\nu+1}(\mathbb{F}_q) = \operatorname{GL}_{\nu+1}(\mathbb{F}_q)/(\mathbb{F}_q)^*$ acts on lines through origin: on the $n = (q^{\nu+1} - 1)(q - 1)$ points of projective ν -space.
- Brumer-McLaughlin-Misera-Feit-Thompson-Guralnick-Saxl-Müller interactions story told in [UMSt]: Using group theory vs how to study groups. I now outline these points.
 - **(**) What groups arise as G_f with (f, g) a D(avenport)P(air).
 - Is From those, how to produce all Davenport pairs.

Finite field \mathbb{F}_q (with $q = p^t$, p prime). For $v \ge 2$, $\mathbb{F}_{q^{v+1}}$ is a dimension v + 1 vector space over \mathbb{F}_q .

- PGL_{v+1}(F_q) = GL_{v+1}(F_q)/(F_q)* acts on lines through origin: on the n = (q^{v+1} - 1)(q - 1) points of projective v-space.
- Brumer-McLaughlin-Misera-Feit-Thompson-Guralnick-Saxl-Müller interactions story told in [UMSt]: Using group theory vs how to study groups. I now outline these points.
 - **(1)** What groups arise as G_f with (f,g) a D(avenport)P(air).
 - Is From those, how to produce all Davenport pairs.
 - ③ Genus 0 Problem–Thompson Conjecture: From Davenport and related: Only composition factors of f : P¹_w → P¹_z monodromy, A_ns and Z/ps, excluding finitely many exceptions.

- 4 同 2 4 日 2 4 日 2

Finite field \mathbb{F}_q (with $q = p^t$, p prime). For $v \ge 2$, $\mathbb{F}_{q^{v+1}}$ is a dimension v + 1 vector space over \mathbb{F}_q .

- $\operatorname{PGL}_{\nu+1}(\mathbb{F}_q) = \operatorname{GL}_{\nu+1}(\mathbb{F}_q)/(\mathbb{F}_q)^*$ acts on lines through origin: on the $n = (q^{\nu+1} - 1)(q - 1)$ points of projective ν -space.
- Brumer-McLaughlin-Misera-Feit-Thompson-Guralnick-Saxl-Müller interactions story told in [UMSt]: Using group theory vs how to study groups. I now outline these points.
 - **(**) What groups arise as G_f with (f,g) a D(avenport)P(air).
 - Is From those, how to produce all Davenport pairs.
 - ③ Genus 0 Problem–Thompson Conjecture: From Davenport and related: Only composition factors of f : P¹_w → P¹_z monodromy, A_ns and Z/ps, excluding finitely many exceptions.
 - Guralnick conjecture: Precise on actual monodromy of primitive Rational function [Fr05a, §7.2.3].

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

PGL_{v+1}(F_q) has two (inequivalent) doubly transitive permutation representations: On points and on hyperplanes.

- PGL_{v+1}(F_q) has two (inequivalent) doubly transitive permutation representations: On points and on hyperplanes.
- An incidence matrix conjugates between them: They are equivalent as group representations.

- PGL_{v+1}(F_q) has two (inequivalent) doubly transitive permutation representations: On points and on hyperplanes.
- An incidence matrix conjugates between them: They are equivalent as group representations.
- Euler's Thm. gives a cyclic generator, γ_q , of $\mathbb{F}_{q^{\nu+1}}^*$. Multiplying by γ_q on $\mathbb{F}_{q^{\nu+1}} = F_q^{\nu+1}$ induces an *n*-cycle in $\mathrm{PGL}_{\nu+1}(\mathbb{F}_q)$.

- PGL_{v+1}(F_q) has two (inequivalent) doubly transitive permutation representations: On points and on hyperplanes.
- An incidence matrix conjugates between them: They are equivalent as group representations.
- Euler's Thm. gives a cyclic generator, γ_q , of $\mathbb{F}_{q^{\nu+1}}^*$. Multiplying by γ_q on $\mathbb{F}_{q^{\nu+1}} = F_q^{\nu+1}$ induces an *n*-cycle in $\mathrm{PGL}_{\nu+1}(\mathbb{F}_q)$.
- Conjecture [Fr73]: Two equivalent doubly transitive reps. and *n*-cycle: Except for one of deg 11, all are *nearly* PGL_{v+1} s. Proof (from classification) [Fr99, §9], based on [CKS76].

III.B: Punchlines on Davenport (*f* indecomposable)

Davenport's Question: ∃ DPs over Q? Multiplier Theorem
 ⇒ g is complex conjugate to f. No DPs over Q.
 Equivalent to σ_∞ not conjugate to σ_∞⁻¹.
 No use of classification; first use of Branch Cycle Argument.

III.B: Punchlines on Davenport (*f* indecomposable)

- Davenport's Question: ∃ DPs over Q? Multiplier Theorem
 ⇒ g is complex conjugate to f. No DPs over Q.
 Equivalent to σ_∞ not conjugate to σ_∞⁻¹.
 No use of classification; first use of Branch Cycle Argument.
- Answer to Schinzel's Problem: If f(x) h(y) factors (over \mathbb{C}), then $h = g(h_2(y))$ with (f, g) a DP over some field.

III.B: Punchlines on Davenport (*f* indecomposable)

- Davenport's Question: ∃ DPs over Q? Multiplier Theorem
 ⇒ g is complex conjugate to f. No DPs over Q.
 Equivalent to σ_∞ not conjugate to σ_∞⁻¹.
 No use of classification; first use of Branch Cycle Argument.
- 2 Answer to Schinzel's Problem: If f(x) h(y) factors (over \mathbb{C}), then $h = g(h_2(y))$ with (f, g) a DP over some field.
- Obgrees of DPs over some number field K:

$$n = 7, 11, 13, 15, 21, 31.$$

For each n, we know exactly what K s carry DPs.

For n = 7, 13, 15 (resp. described in [Fr80, §B], [CoCa99], [Fr99,§8]) there are non-trivial Möbius equivalence families of Davenport pairs. For n = 7 = 1 + 2 + 2², G_f = PGL₃(ℤ/2).

- For n = 7, 13, 15 (resp. described in [Fr80, §B], [CoCa99], [Fr99,§8]) there are non-trivial Möbius equivalence families of Davenport pairs. For n = 7 = 1 + 2 + 2², G_f = PGL₃(ℤ/2).
- **2** n = 7 branch cycles: $(\sigma_1, \sigma_2, \sigma_3, \sigma_4)$; $\sigma_1, \sigma_2, \sigma_3$ involutions, each fixing the 3 points, on some hyperplane; σ_4 a 7-cycle.

- For n = 7, 13, 15 (resp. described in [Fr80, §B], [CoCa99], [Fr99,§8]) there are non-trivial Möbius equivalence families of Davenport pairs. For n = 7 = 1 + 2 + 2², G_f = PGL₃(ℤ/2).
- **2** n = 7 branch cycles: $(\sigma_1, \sigma_2, \sigma_3, \sigma_4)$; $\sigma_1, \sigma_2, \sigma_3$ involutions, each fixing the 3 points, on some hyperplane; σ_4 a 7-cycle.
 - Riemann-Hurwitz: Cover with these branch cycles has genus $\mathbf{g}_7 = 0$: $2(7 + \mathbf{g}_7 1) = \sum_{i=1}^4 \operatorname{ind}(\sigma_i) = 3 \cdot 2 + 6 \implies \mathbf{g}_7 = 0$.

- For n = 7, 13, 15 (resp. described in [Fr80, §B], [CoCa99], [Fr99,§8]) there are non-trivial Möbius equivalence families of Davenport pairs. For n = 7 = 1 + 2 + 2², G_f = PGL₃(ℤ/2).
- **2** n = 7 branch cycles: $(\sigma_1, \sigma_2, \sigma_3, \sigma_4)$; $\sigma_1, \sigma_2, \sigma_3$ involutions, each fixing the 3 points, on some hyperplane; σ_4 a 7-cycle.
 - Riemann-Hurwitz: Cover with these branch cycles has genus $\mathbf{g}_7 = 0$: $2(7 + \mathbf{g}_7 1) = \sum_{i=1}^4 \operatorname{ind}(\sigma_i) = 3 \cdot 2 + 6 \implies \mathbf{g}_7 = 0.$
- Solution Two genus 0 *j*-line covers parametrize the (*f*, *g*) pairs − two reduced Hurwitz spaces − conjugate over Q(√−7).

- For n = 7, 13, 15 (resp. described in [Fr80, §B], [CoCa99], [Fr99,§8]) there are non-trivial Möbius equivalence families of Davenport pairs. For n = 7 = 1 + 2 + 2², G_f = PGL₃(ℤ/2).
- **2** n = 7 branch cycles: $(\sigma_1, \sigma_2, \sigma_3, \sigma_4)$; $\sigma_1, \sigma_2, \sigma_3$ involutions, each fixing the 3 points, on some hyperplane; σ_4 a 7-cycle.
 - Riemann-Hurwitz: Cover with these branch cycles has genus $\mathbf{g}_7 = 0$: $2(7 + \mathbf{g}_7 1) = \sum_{i=1}^4 \operatorname{ind}(\sigma_i) = 3 \cdot 2 + 6 \implies \mathbf{g}_7 = 0.$
- Two genus 0 *j*-line covers parametrize the (f, g) pairs two reduced Hurwitz spaces conjugate over $\mathbb{Q}(\sqrt{-7})$.
- A cover gives a bundle: Both families parametrize the same family of rank 7 bundles (over Q). Similarly, for n = 13 and 15.

- For n = 7, 13, 15 (resp. described in [Fr80, §B], [CoCa99], [Fr99,§8]) there are non-trivial Möbius equivalence families of Davenport pairs. For n = 7 = 1 + 2 + 2², G_f = PGL₃(ℤ/2).
- **2** n = 7 branch cycles: $(\sigma_1, \sigma_2, \sigma_3, \sigma_4)$; $\sigma_1, \sigma_2, \sigma_3$ involutions, each fixing the 3 points, on some hyperplane; σ_4 a 7-cycle.
 - Riemann-Hurwitz: Cover with these branch cycles has genus $\mathbf{g}_7 = 0$: $2(7 + \mathbf{g}_7 1) = \sum_{i=1}^4 \operatorname{ind}(\sigma_i) = 3 \cdot 2 + 6 \implies \mathbf{g}_7 = 0.$
- Solution Two genus 0 *j*-line covers parametrize the (*f*, *g*) pairs − two reduced Hurwitz spaces − conjugate over Q(√−7).
- A cover gives a bundle: Both families parametrize the same family of rank 7 bundles (over Q). Similarly, for n = 13 and 15.
- Son Solomon [So01] says things about "groups appearing in Nature:" Do *rational functions* appear in nature?

Bibliography

[A-O-S85] M. Aschbacher and L. Scott, Maximal subgroups of finite groups, J. Algebra 92 (1985), 44–80.

[CoCa99] J.-M. Couveignes and P. Cassou-Noguès, Factorisations explicites de g(y)-h(z), Acta Arith. 87 (1999), no. 4, 291–317.

[CKS76] C.W. Curtis, W.M. Kantor and G.M. Seitz, 2-transitive

permutation reps. of the finite Chevalley groups, TAMS 218 (1976), 1-59.

[DL63] H. Davenport and D.J. Lewis, Notes on Congruences (I),

- Qt. J. Math. Oxford (2) 14 (1963), 51-60.
- [Fr73] M. Fried, Field of definition of function fields and ... reducibility of polynomials in two variables, Ill. J. Math. 17 (1973), 128–146.

[Fr80] M. Fried, Exposition on an Arithmetic-Group Theoretic Connection via Riemann's Existence Theorem, Santa Cruz Conf. on Finite Groups, A.M.S. Pub. 37 (1980), 571–601.

[Fr99] M. Fried, Variables Separated Polynomials and Moduli Spaces, No. Th. in Prog., Schinzel Festschrift, Sum. 1997, Walter de Gruyter, Berlin-NY (Feb. 1999), 169–228.

[Fr05a] M. Fried, Relating two genus 0 problems of John Thompson, Volume for John Thompson's 70th birthday, in Progress in Galois Theory, H. Voelklein and T. Shaska editors 2005 Springer Science, 51–85. [Fr05b] M. Fried, The place of exceptional covers among all diophantine relations, J. Finite Fields 11 (2005) 367–433.

[FGS93] M. Fried, R. Guralnick and J. Saxl, Schur Covers and Carlitz's Conjecture, Israel J.; Thompson Volume 82 (1993), 157–225.

[GLS] D. Gorenstein, R. Lyons, R. Solomon, Classification of Finite Simple Groups, No. 3, Math. Surveys and Monographs, 40 ISBN:0821803913.

[LPS] M. Liebeck, C. Praeger, J. Saxl, Maximal factorizations of finite simple groups ..., Mem. AMS 86 #432 (1990).

[Mc67] C. MacCluer, On a conjecture of Davenport and Lewis concerning exceptional poly- nomials, Acta. Arith. 12 (1967), 289–299.

[Mü95] P. Müller, Primitive monodromy groups of polynomials,

Proceedings of the Recent developments in the Inverse Galois Problem conference, vol. 186, 1995, AMS Cont. Math series, 385–401.

[Sc71] A. Schinzel, Reducibility of Polynomials, Int. Cong. Math. Nice 1970 (1971), Gauthier-Villars, 491–496.

[So01] R. Solomon, A Brief History of the Classification of Finite Simple Groups, BAMS 38 (3) (2001), 315–352.

[UMSt] http://www.math.uci.edu/~mfried/paplist-cov/UMStory.html.

・ 同 ト ・ 三 ト ・