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© Algebraic equations in separated variables:

{(x, )If(x) — &(y) = 0}.
@ Normalize for a projective nonsingular algebraic curve X¢ ; with
two projections to the (Riemann sphere) z-line P = C U {co}:

. 1 . 1.
pry : Xrg — Py and pry : Xp g — Py,
.ol 1 .ol 1
f:P,—P;and g: P, — P;.



We use 2 problems from 60s solved by the monodromy method,
refers to 2 genus O problems related to John Thompson

© Davenport’s: Suppose f,g € K[x] \ K has exactly the same
ranges on almost all residue fields:
Related in obvious way — f(x) = g(ax + b), a, b constant?
[Sc71], [Fr73].
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We use 2 problems from 60s solved by the monodromy method,
refers to 2 genus O problems related to John Thompson

© Davenport’s: Suppose f,g € K[x] \ K has exactly the same
ranges on almost all residue fields:
Related in obvious way — f(x) = g(ax + b), a, b constant?
[Sc71], [Fr73].

@ Schinzel's: Suppose f(x) — g(y) reducible:
Are f, g related in an obvious way?

© Ist Genus 0 Problem: What are possible monodromy groups
Gr (f a polynomial or rational function)? [Fr05a, §7.2]

@ 2nd Genus 0 problem: Relate characters of the Monster simple
group and genus 0 modular curves.
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Indecomposability condition: We will assume f is not a
composition of lower degree polynomials.
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Summary

Indecomposability condition: We will assume f is not a
composition of lower degree polynomials.

@ Part I: Davenport and Schinzel Problems

@ o §l.A. The dihedral group with observations
e §1.B. Splitting variables
o §1.C. Introducing Galois groups
o §1.D. Translating Davenport to Group Theory

© Part Il: Primitivity, cycles, Simple Group Classification
© o §ILA. Translating Primitivity for f : X — P

o §I1.B. Further Group translation of Davenport

o §l11.C. Double Transitivity and Difference sets
@ Part Ill. What groups give Davenport pairs and how?

Q@ o §llLLA. Projective Linear Groups
o §lI.B. Punchlines on Davenport (f indecomposable)
e §III.C. From IlI.B, Hints at the Genus 0 Problem
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Part |: Davenport and Schinzel Problems

|.LA: Chebychev polynomials are dihedral polynomials

Regard any rational function f in w — degree m — as a cover of a
complex sphere by a complex sphere:

f:PL =C, U{c0} =Pl =C,U{x}.

Then, f has finitely many (branch) points, z’, over which it
ramifies: Instead of m distinct values of w, there are fewer.
Designate branch points by {z,...,z} = z.

e Calculus: Uses T(cos(f)) = cos(m@), with T,(w) = z: mth
Chebychev polynomial.
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Regard any rational function f in w — degree m — as a cover of a
complex sphere by a complex sphere:

f:PL =C, U{c0} =Pl =C,U{x}.

Then, f has finitely many (branch) points, z’, over which it
ramifies: Instead of m distinct values of w, there are fewer.
Designate branch points by {z,...,z} = z.

e Calculus: Uses T(cos(f)) = cos(m@), with T,(w) = z: mth
Chebychev polynomial.

@ Goal: Express cos(6)™ as a sum of cos(kf) terms, 0 < k < m.
So, we can integrate any polynomial in cos(#).
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Part |: Davenport and Schinzel Problems

|.LA: Chebychev polynomials are dihedral polynomials

Regard any rational function f in w — degree m — as a cover of a
complex sphere by a complex sphere:

f:PL =C, U{c0} =Pl =C,U{x}.

Then, f has finitely many (branch) points, z’, over which it
ramifies: Instead of m distinct values of w, there are fewer.
Designate branch points by {z,...,z} = z.

e Calculus: Uses T(cos(f)) = cos(m@), with T,(w) = z: mth
Chebychev polynomial.

@ Goal: Express cos(6)™ as a sum of cos(kf) terms, 0 < k < m.
So, we can integrate any polynomial in cos(#).

@ Trick: Induct on m to find T} (w) =2T,,(w/2) so
T* (u+1/u) = u™+1/u™. Then substitute u — e*™

Variables Separated Equations



Branch cycles for rational functions

. def .
e Select a point z € P! = U,. Use classical generators of

7m1(Uz, 29), P1,..., Py, based at z around z.

Variables Separated Equations



Branch cycles for rational functions

. def .
@ Select a point zy € PL\ z = U,. Use classical generators of
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o Label points of P} over z5 as {1’,...,m’'}. Each P; is a loop
around z.(jy where 7 is a permutation of {1,...,r}.
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@ Select a point zy € PL\ z = U,. Use classical generators of

7m1(Uz, 29), P1,..., Py, based at z around z.
o Label points of P} over z5 as {1’,...,m’'}. Each P; is a loop
around z.(jy where 7 is a permutation of {1,...,r}.
@ Restrict f over pullback U, C PL of U, in PL. Unique path
lift of P;, starting at j/ € {1/,..., m’'} — endpoint j”.
Gives a permutation o; of {1',... , m'}.
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7m1(Uz, 29), P1,..., Py, based at z around z.
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around z.(jy where 7 is a permutation of {1,...,r}.

@ Restrict f over pullback U, C PL of U, in PL. Unique path
lift of P;, starting at j/ € {1/,..., m’'} — endpoint j”.
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e (01,...,0,) =0 — branch cycles for f — ordered from classical

generators emanating in order clockwise from zj.
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Branch cycles for rational functions

. def .
@ Select a point zy € PL\ z = U,. Use classical generators of

7m1(Uz, 29), P1,..., Py, based at z around z.

o Label points of P} over z5 as {1’,...,m’'}. Each P; is a loop
around z.(jy where 7 is a permutation of {1,...,r}.

@ Restrict f over pullback U, C PL of U, in PL. Unique path
lift of P;, starting at j/ € {1/,..., m’'} — endpoint j”.
Gives a permutation o; of {1',... , m'}.

e (01,...,0,) =0 — branch cycles for f — ordered from classical
generators emanating in order clockwise from zj.

@ Generation: (o1,...,0,) = Gf < Sy, is group of smallest
Galois cover of P! over C factoring through P},
Call f a Gf cover (T, is a dihedral cover).
@ Conjugacy classes: the o; s represent r conjugacy classes C in
Gr with well-defined multiplicity.
© Product-one: o1 ---0, = 1.
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|.B: Splitting variables

@ Separated variables = introduce z:
f(x) —z=0and g(y) —z=0. Express by covers:
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|.B: Splitting variables

@ Separated variables = introduce z:
f(x) —z=0and g(y) —z=0. Express by covers:

o f:PL -Pland g: ]P’}, — P! (added oo; degrees m and n).
Note: Problem not changed by replacing (f, g) by
(vofof,aogo~y) with a, 3, affine transformations.
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|.B: Splitting variables

@ Separated variables = introduce z:

f(x) —z=0and g(y) —z=0. Express by covers:

o f:PL -Pland g: ]P’}, — P! (added oo; degrees m and n).
Note: Problem not changed by replacing (f, g) by
(vofof,aogo~y) with a, 3, affine transformations.

e Fiber product denoted P% X p1 P}l,:

{XY) () =gy}

But this will have singularities. We want non-singular
(normalization) of set-theoretic fiber product.
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|.C: More on Galois closure of f

© Galois closure covers  : Xf — PL (resp. & :Xg — PL):
connected component of m-fold (resp. n-fold) fiber product of
f (resp. g), minus fat diagonal.
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© Galois closure covers  : Xf — PL (resp. & :Xg — PL):
connected component of m-fold (resp. n-fold) fiber product of
f (resp. g), minus fat diagonal.

@ S, permutes coordinates: Gy is subgroup of S, fixing X;:;
Denote the permutation representation by Tr.
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|.C: More on Galois closure of f

© Galois closure covers  : Xf — PL (resp. & :Xg — PL):
connected component of m-fold (resp. n-fold) fiber product of
f (resp. g), minus fat diagonal.

@ S, permutes coordinates: Gy is subgroup of S, fixing X;:;
Denote the permutation representation by Tr.

© Combine Galois closures: Fiber product of f and g over the
maximal cover Z — PL through which they both factor:

Gng = Gr X G(Z/PL) Gg.

Projects to G and Gg, inducing reps. T¢ and T,.
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|.D: Translating Davenport to Group Theory

Start of monodromy method

As expected, particular problems require an expert to translate:
Use C(hebotarev) D(ensity) T(heorem)*

Theorem (Strong Davenport)

Equivalent to (f, g) a Davenport pair: ¥ o € Gy g,
T¢(o) fixes an integer < Tg(o) fixes an integer.

The + above CDT: Usual rough result is here precise.

@ If conclusion reduced mod prime p holds, then ranges of f and
g mod p are the same [DL63], [FrO5b, Princ. 3.1}, [Mc67].
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Theorem (Strong Davenport)

Equivalent to (f, g) a Davenport pair: ¥ o € Gy g,
T¢(o) fixes an integer < Tg(o) fixes an integer.

The + above CDT: Usual rough result is here precise.

@ If conclusion reduced mod prime p holds, then ranges of f and
g mod p are the same [DL63], [FrO5b, Princ. 3.1}, [Mc67].

@ Actual Davenport pairs have equality in the ranges without
exception, (you might expect only near equality).
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|.D: Translating Davenport to Group Theory

Start of monodromy method

As expected, particular problems require an expert to translate:
Use C(hebotarev) D(ensity) T(heorem)*

Theorem (Strong Davenport)

Equivalent to (f, g) a Davenport pair: ¥ o € Gy g,
T¢(o) fixes an integer < Tg(o) fixes an integer.

The + above CDT: Usual rough result is here precise.

@ If conclusion reduced mod prime p holds, then ranges of f and
g mod p are the same [DL63], [FrO5b, Princ. 3.1}, [Mc67].

@ Actual Davenport pairs have equality in the ranges without
exception, (you might expect only near equality).

o Natural pairs come with equality of ranges for all primes.

Variables Separated Equations



Capturing Davenport with Group Theory

@ Group Problem P;: What groups (permutation pairs) give such
a Gr g7 How does this relate to simple group classification?
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polynomials (f, g) satisfying Davenport?

Variables Separated Equations



Capturing Davenport with Group Theory
@ Group Problem P;: What groups (permutation pairs) give such
a Gr g7 How does this relate to simple group classification?

@ Converse Problem P,: Even answering Py, from whence
polynomials (f, g) satisfying Davenport?
© Our hypothesis: f indecomposable < G is primitive.
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Capturing Davenport with Group Theory

@ Group Problem P;: What groups (permutation pairs) give such
a Gr g7 How does this relate to simple group classification?

@ Converse Problem P,: Even answering Py, from whence
polynomials (f, g) satisfying Davenport?
© Our hypothesis: f indecomposable < G is primitive.
e Primitive: No group properly between Gf and

Gr(1) ={o € Gr | T¢(o)(1) =1}.
o Doubly Transitive: G¢(1) transitive on {2,..., m}
= primitive.
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Part Il: Primitivity, cycles, Simple Group Classification

IlLA: Translating Primitivity for f : X — P!

Primitive group template of 5 patterns: 4 from (almost) simple
groups; rest from affine groups [A-O-S85], [FGS93, §13].
Classifying Doubly transitive groups is easier.

If group is not primitive, even the classification isn't helpful.

@ Gy primitive < f factors through no proper cover.

Variables Separated Equations



Part Il: Primitivity, cycles, Simple Group Classification

IlLA: Translating Primitivity for f : X — P!

Primitive group template of 5 patterns: 4 from (almost) simple
groups; rest from affine groups [A-O-S85], [FGS93, §13].
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If group is not primitive, even the classification isn't helpful.

@ Gy primitive < f factors through no proper cover.

o Gy doubly transitive <> X xp1 X has exactly two irreducible
components (one the diagonal).
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Part Il: Primitivity, cycles, Simple Group Classification

IlLA: Translating Primitivity for f : X — P!

Primitive group template of 5 patterns: 4 from (almost) simple
groups; rest from affine groups [A-O-S85], [FGS93, §13].
Classifying Doubly transitive groups is easier.

If group is not primitive, even the classification isn't helpful.

@ Gy primitive < f factors through no proper cover.

o Gy doubly transitive <> X xp1 X has exactly two irreducible
components (one the diagonal).

@ Doubly Transitive < (f(x) —f(y)/(x —y) irreducible.
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[I.B: Further Group translation of Davenport

Key Observations:

© Degree m poly. branch cycles include an m-cycle o, at oo.
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[I.B: Further Group translation of Davenport

Key Observations:
© Degree m poly. branch cycles include an m-cycle o, at oo.

@ If T primitive, then T¢ doubly transitive unless f is
(Mébius equivalent to: modulo linear fractional compositions)
Chebychev or cyclic (x — x) [Fr70].
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(Mébius equivalent to: modulo linear fractional compositions)
Chebychev or cyclic (x — x) [Fr70].
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[I.B: Further Group translation of Davenport

Key Observations:
© Degree m poly. branch cycles include an m-cycle o, at oo.
@ If T primitive, then T¢ doubly transitive unless f is

(Mébius equivalent to: modulo linear fractional compositions)
Chebychev or cyclic (x — x) [Fr70].

© Representation Thm: For (f, g) a Davenport pair:

o deg(f) = deg(g), Xr = )A<g, so G = Gg; and
o Tr = T, as group representations, but not as permutation
representations.

Variables Separated Equations



Proof of Degree Equality

@ Get branch cycle 0 in Gf g with T¢(0o) (resp. Tg(0x)) an
m-cycle (resp. n-cycle).
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Proof of Degree Equality

@ Get branch cycle 0 in Gf g with T¢(0o) (resp. Tg(0x)) an
m-cycle (resp. n-cycle).
@ Suppose (m,n) = d < m. Consider ¢/ =c2.
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Proof of Degree Equality

@ Get branch cycle 0 in Gf g with T¢(0o) (resp. Tg(0x)) an
m-cycle (resp. n-cycle).
@ Suppose (m,n) = d < m. Consider ¢/ =c2.

@ Then T¢(o') fixes all integers; Tg(c’) moves each integer.
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Proof of Degree Equality

@ Get branch cycle 0 in Gf g with T¢(0o) (resp. Tg(0x)) an
m-cycle (resp. n-cycle).
Suppose (m,n) = d < m. Consider ¢/ = oZ.

Then T¢(0’) fixes all integers; Tg(o’) moves each integer.
This contradicts Strong Dav. Thm.
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Proof of Degree Equality

Get branch cycle oo, in Gr g with T¢(0o) (resp. Tg(0so)) an
m-cycle (resp. n-cycle).

Suppose (m,n) = d < m. Consider ¢/ = oZ.

Then T¢(0’) fixes all integers; Tg(o’) moves each integer.
This contradicts Strong Dav. Thm.

A fancier version of this gives Xy = )A(g and Gf = Gg.
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[I.C: Double Transitivity and Difference sets

Consider zeros {x;}7_; of f(x) — z. Equality of Galois closures —-
these are functions of zeros {y;}"_; of g(y) — z (and vice-versa).

@ Normalize numbering: o, cycles x;s and y;s.

Variables Separated Equations



[I.C: Double Transitivity and Difference sets

Consider zeros {x;}7_; of f(x) — z. Equality of Galois closures —-
these are functions of zeros {y;}"_; of g(y) — z (and vice-versa).

@ Normalize numbering: o, cycles x;s and y;s.

Theorem (Double Transitivity)

T+ doubly transitive = this much stronger conclusion:
XN=Y1+Yo+  + Yo 2<k<(n—1)/2:

The representation space is the same for xs and y s.
Write Ry = {1, a2, ...,ax} mod n.
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Difference Set Argument

Theorem (Multiplier)

©@ o Different set: Among nonzero differences from Ry, each integer
{1,...,n—1} occurs u= k(k—1)/(n—1) times.
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Difference Set Argument

Theorem (Multiplier)

©@ o Different set: Among nonzero differences from Ry, each integer
{1,...,n—1} occurs u= k(k—1)/(n—1) times.

o The expression for yjs in x;s gives the different set (up to
translation) —R;.

@ Acting by 0 — translating subscripts — gives collections R;,
i=1,...,n
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Difference Set Argument

Theorem (Multiplier)

©@ o Different set: Among nonzero differences from Ry, each integer
{1,...,n—1} occurs u= k(k—1)/(n—1) times.

o The expression for yjs in x;s gives the different set (up to
translation) —R;.

@ Acting by 0 — translating subscripts — gives collections R;,
i=1,...,n

© # times u mod n appears as a (nonzero) difference from Ry
equals # times {1, u+ 1} appears in the union of the R;s.
(Normalize u as a difference to have 1st integer "1.")
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Difference Set Argument

Theorem (Multiplier)

©@ o Different set: Among nonzero differences from Ry, each integer
{1,...,n—1} occurs u= k(k—1)/(n—1) times.

o The expression for yjs in x;s gives the different set (up to
translation) —R;.

@ Acting by 0 — translating subscripts — gives collections R;,
i=1,...,n

© # times u mod n appears as a (nonzero) difference from Ry
equals # times {1, u+ 1} appears in the union of the R;s.
(Normalize u as a difference to have 1st integer "1.")

© Tr doubly transitive & G¢(1) transitive on {2,...,n}:
# of appearances of {1, u+ 1} in U;R; independent of u.
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Part Ill: What groups give Davenport pairs and how?

§l11.A: Projective Linear Groups

Finite field Fg (with g = p*, p prime). For v > 2, F 41 is a
dimension v + 1 vector space over [Fg.

o PGL,11(Fq) = GLy41(Fq)/(IFq)* acts on lines through origin:
on the n = (q‘“rl 1)(g — 1) points of projective v-space.
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Part Ill: What groups give Davenport pairs and how?

§l11.A: Projective Linear Groups

Finite field Fg (with g = p*, p prime). For v > 2, F 41 is a
dimension v + 1 vector space over [Fg.

o PGL,11(Fq) = GLy41(Fq)/(IFq)* acts on lines through origin:
on the n = (q‘“rl 1)(g — 1) points of projective v-space.

@ Brumer-McLaughlin-Misera-Feit-Thompson-Guralnick-SaxI-
Miiller interactions story told in [UMSt]: Using group theory vs
how to study groups. | now outline these points.
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dimension v + 1 vector space over [Fg.
o PGL,11(Fq) = GLy41(Fq)/(IFq)* acts on lines through origin:
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© What groups arise as Gr with (f, g) a D(avenport)P(air).

Variables Separated Equations



Part Ill: What groups give Davenport pairs and how?

§l11.A: Projective Linear Groups

Finite field Fg (with g = p*, p prime). For v > 2, F 41 is a
dimension v + 1 vector space over [Fg.

o PGL,11(Fq) = GLy41(Fq)/(IFq)* acts on lines through origin:
on the n = (q‘“rl 1)(g — 1) points of projective v-space.

@ Brumer-McLaughlin-Misera-Feit-Thompson-Guralnick-SaxI-
Miiller interactions story told in [UMSt]: Using group theory vs
how to study groups. | now outline these points.

© What groups arise as Gr with (f, g) a D(avenport)P(air).
@ From those, how to produce all Davenport pairs.
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Part Ill: What groups give Davenport pairs and how?

§l11.A: Projective Linear Groups

Finite field Fg (with g = p*, p prime). For v > 2, F 41 is a
dimension v + 1 vector space over [Fg.

o PGL,11(Fq) = GLy41(Fq)/(IFq)* acts on lines through origin:
on the n = (q‘“rl 1)(g — 1) points of projective v-space.

@ Brumer-McLaughlin-Misera-Feit-Thompson-Guralnick-SaxI-
Miiller interactions story told in [UMSt]: Using group theory vs
how to study groups. | now outline these points.

© What groups arise as Gr with (f, g) a D(avenport)P(air).

@ From those, how to produce all Davenport pairs.

© Genus 0 Problem—Thompson Conjecture: From Davenport and
related: Only composition factors of f : P, — P monodromy,
Ans and Z/ps, excluding finitely many exceptions.
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Part Ill: What groups give Davenport pairs and how?

§l11.A: Projective Linear Groups

Finite field Fg (with g = p*, p prime). For v > 2, F 41 is a
dimension v + 1 vector space over [Fg.

o PGL,11(Fq) = GLy41(Fq)/(IFq)* acts on lines through origin:
on the n = (q‘“rl 1)(g — 1) points of projective v-space.

@ Brumer-McLaughlin-Misera-Feit-Thompson-Guralnick-SaxI-
Miiller interactions story told in [UMSt]: Using group theory vs
how to study groups. | now outline these points.

© What groups arise as Gr with (f, g) a D(avenport)P(air).

@ From those, how to produce all Davenport pairs.

© Genus 0 Problem—Thompson Conjecture: From Davenport and
related: Only composition factors of f : P, — P monodromy,
Ans and Z/ps, excluding finitely many exceptions.

© Guralnick conjecture: Precise on actual monodromy of
primitive Rational function [Fr05a, §7.2.3].
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Why projective Linear Groups arise

@ PGL,1(Fg) has two (inequivalent) doubly transitive
permutation representations: On points and on hyperplanes.
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Why projective Linear Groups arise

@ PGL,1(Fg) has two (inequivalent) doubly transitive
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Why projective Linear Groups arise
@ PGL,1(Fg) has two (inequivalent) doubly transitive
permutation representations: On points and on hyperplanes.

@ An incidence matrix conjugates between them: They are
equivalent as group representations.

© Euler's Thm. gives a cyclic generator, v4, of F;VH. Multiplying
by 74 on Fvi1 = FY! induces an n-cycle in PGLy41(Fg).

© Conjecture [Fr73]: Two equivalent doubly transitive reps. and
n-cycle: Except for one of deg 11, all are nearly PGL,1s.
Proof (from classification) [Fr99, §9], based on [CKST76].
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I11.B: Punchlines on Davenport (f indecomposable)

© Davenport's Question: 3 DPs over Q7 Multiplier Theorem
—> g is complex conjugate to f. No DPs over Q.
Equivalent to 04, not conjugate to ol
No use of classification; first use of Branch Cycle Argument.
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—> g is complex conjugate to f. No DPs over Q.
Equivalent to 04, not conjugate to ol
No use of classification; first use of Branch Cycle Argument.
@ Answer to Schinzel's Problem: If f(x) — h(y) factors (over C),
then h = g(ha(y)) with (f,g) a DP over some field.
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I11.B: Punchlines on Davenport (f indecomposable)

© Davenport's Question: 3 DPs over Q7 Multiplier Theorem
—> g is complex conjugate to f. No DPs over Q.
Equivalent to 04, not conjugate to ol
No use of classification; first use of Branch Cycle Argument.

@ Answer to Schinzel's Problem: If f(x) — h(y) factors (over C),
then h = g(ha(y)) with (f,g) a DP over some field.

© Degrees of DPs over some number field K:
n=7,11,13,15,21,31.

For each n, we know exactly what K's carry DPs.

Variables Separated Equations



[11.C: From IIl.B, Hints at the Genus 0 Problem

© For n=7,13,15 (resp. described in [Fr80, §B], [CoCa99],
[Fr99,88]) there are non-trivial M&bius equivalence families of
Davenport pairs. For n =7 =1+ 2+ 22, Gr = PGL3(Z/2).
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© For n=7,13,15 (resp. described in [Fr80, §B], [CoCa99],
[Fr99,88]) there are non-trivial M&bius equivalence families of
Davenport pairs. For n =7 =1+ 2+ 22, Gr = PGL3(Z/2).
@ n =7 branch cycles: (01,02,03,04); 01,02, 03 involutions,
each fixing the 3 points, on some hyperplane; o4 a 7-cycle.
e Riemann-Hurwitz: Cover with these branch cycles has genus
g =0: 2(74+g7-1)=>"1 ,ind(0;) =3-2+6 — g;=0.
© Two genus 0 j-line covers parametrize the (f, g) pairs — two
reduced Hurwitz spaces — conjugate over Q(v/—7).
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[11.C: From IIl.B, Hints at the Genus 0 Problem

© For n=7,13,15 (resp. described in [Fr80, §B], [CoCa99],
[Fr99,88]) there are non-trivial M&bius equivalence families of
Davenport pairs. For n =7 =1+ 2+ 22, Gr = PGL3(Z/2).
@ n =7 branch cycles: (01,02,03,04); 01,02, 03 involutions,
each fixing the 3 points, on some hyperplane; o4 a 7-cycle.
e Riemann-Hurwitz: Cover with these branch cycles has genus
g7 =0: 2(7T+g7-1)=>1 ,ind(0;) =3-2+6 — g7=0.
© Two genus 0 j-line covers parametrize the (f, g) pairs — two
reduced Hurwitz spaces — conjugate over Q(v/—7).
@ A cover gives a bundle: Both families parametrize the same
family of rank 7 bundles (over Q). Similarly, for n = 13 and 15.
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[11.C: From IIl.B, Hints at the Genus 0 Problem

© For n=7,13,15 (resp. described in [Fr80, §B], [CoCa99],
[Fr99,88]) there are non-trivial M&bius equivalence families of
Davenport pairs. For n =7 =1+ 2+ 22, Gr = PGL3(Z/2).
@ n =7 branch cycles: (01,02,03,04); 01,02, 03 involutions,
each fixing the 3 points, on some hyperplane; o4 a 7-cycle.
e Riemann-Hurwitz: Cover with these branch cycles has genus
g =0: 2(74+g7-1)=>"1 ,ind(0;) =3-2+6 — g;=0.
© Two genus 0 j-line covers parametrize the (f, g) pairs — two
reduced Hurwitz spaces — conjugate over Q(v/—7).

@ A cover gives a bundle: Both families parametrize the same
family of rank 7 bundles (over Q). Similarly, for n = 13 and 15.

@ Ron Solomon [So01] says things about "groups appearing in
Nature:" Do rational functions appear in nature?
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